43,470 research outputs found

    Edge-Stable Equimatchable Graphs

    Full text link
    A graph GG is \emph{equimatchable} if every maximal matching of GG has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph GG \emph{edge-stable} if GeG\setminus {e}, that is the graph obtained by the removal of edge ee from GG, is also equimatchable for any eE(G)e \in E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m))O(\min(n^{3.376}, n^{1.5}m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions

    Nonbipartite Dulmage-Mendelsohn Decomposition for Berge Duality

    Full text link
    The Dulmage-Mendelsohn decomposition is a classical canonical decomposition in matching theory applicable for bipartite graphs, and is famous not only for its application in the field of matrix computation, but also for providing a prototypal structure in matroidal optimization theory. The Dulmage-Mendelsohn decomposition is stated and proved using the two color classes, and therefore generalizing this decomposition for nonbipartite graphs has been a difficult task. In this paper, we obtain a new canonical decomposition that is a generalization of the Dulmage-Mendelsohn decomposition for arbitrary graphs, using a recently introduced tool in matching theory, the basilica decomposition. Our result enables us to understand all known canonical decompositions in a unified way. Furthermore, we apply our result to derive a new theorem regarding barriers. The duality theorem for the maximum matching problem is the celebrated Berge formula, in which dual optimizers are known as barriers. Several results regarding maximal barriers have been derived by known canonical decompositions, however no characterization has been known for general graphs. In this paper, we provide a characterization of the family of maximal barriers in general graphs, in which the known results are developed and unified

    Metric characterization of cluster dynamics on the Sierpinski gasket

    Full text link
    We develop and implement an algorithm for the quantitative characterization of cluster dynamics occurring on cellular automata defined on an arbitrary structure. As a prototype for such systems we focus on the Ising model on a finite Sierpsinski Gasket, which is known to possess a complex thermodynamic behavior. Our algorithm requires the projection of evolving configurations into an appropriate partition space, where an information-based metrics (Rohlin distance) can be naturally defined and worked out in order to detect the changing and the stable components of clusters. The analysis highlights the existence of different temperature regimes according to the size and the rate of change of clusters. Such regimes are, in turn, related to the correlation length and the emerging "critical" fluctuations, in agreement with previous thermodynamic analysis, hence providing a non-trivial geometric description of the peculiar critical-like behavior exhibited by the system. Moreover, at high temperatures, we highlight the existence of different time scales controlling the evolution towards chaos.Comment: 20 pages, 8 figure

    Problems on Matchings and Independent Sets of a Graph

    Full text link
    Let GG be a finite simple graph. For XV(G)X \subset V(G), the difference of XX, d(X):=XN(X)d(X) := |X| - |N (X)| where N(X)N(X) is the neighborhood of XX and max{d(X):XV(G)}\max \, \{d(X):X\subset V(G)\} is called the critical difference of GG. XX is called a critical set if d(X)d(X) equals the critical difference and ker(G)(G) is the intersection of all critical sets. It is known that ker(G)(G) is an independent (vertex) set of GG. diadem(G)(G) is the union of all critical independent sets. An independent set SS is an inclusion minimal set with d(S)>0d(S) > 0 if no proper subset of SS has positive difference. A graph GG is called K\"onig-Egerv\'ary if the sum of its independence number (α(G)\alpha (G)) and matching number (μ(G)\mu (G)) equals V(G)|V(G)|. It is known that bipartite graphs are K\"onig-Egerv\'ary. In this paper, we study independent sets with positive difference for which every proper subset has a smaller difference and prove a result conjectured by Levit and Mandrescu in 2013. The conjecture states that for any graph, the number of inclusion minimal sets SS with d(S)>0d(S) > 0 is at least the critical difference of the graph. We also give a short proof of the inequality |ker(G)+(G)| + |diadem(G)2α(G)(G)| \le 2\alpha (G) (proved by Short in 2016). A characterization of unicyclic non-K\"onig-Egerv\'ary graphs is also presented and a conjecture which states that for such a graph GG, the critical difference equals α(G)μ(G)\alpha (G) - \mu (G), is proved. We also make an observation about kerG)G) using Edmonds-Gallai Structure Theorem as a concluding remark.Comment: 18 pages, 2 figure
    corecore