1,200 research outputs found

    Lattice congruences, fans and Hopf algebras

    Get PDF
    We give a unified explanation of the geometric and algebraic properties of two well-known maps, one from permutations to triangulations, and another from permutations to subsets. Furthermore we give a broad generalization of the maps. Specifically, for any lattice congruence of the weak order on a Coxeter group we construct a complete fan of convex cones with strong properties relative to the corresponding lattice quotient of the weak order. We show that if a family of lattice congruences on the symmetric groups satisfies certain compatibility conditions then the family defines a sub Hopf algebra of the Malvenuto-Reutenauer Hopf algebra of permutations. Such a sub Hopf algebra has a basis which is described by a type of pattern-avoidance. Applying these results, we build the Malvenuto-Reutenauer algebra as the limit of an infinite sequence of smaller algebras, where the second algebra in the sequence is the Hopf algebra of non-commutative symmetric functions. We also associate both a fan and a Hopf algebra to a set of permutations which appears to be equinumerous with the Baxter permutations.Comment: 34 pages, 1 figur

    A characterization of covering equivalence

    Full text link
    Let A={a_s(mod n_s)}_{s=1}^k and B={b_t(mod m_t)}_{t=1}^l be two systems of residue classes. If |{1\le s\le k: x=a_s (mod n_s)}| and |{1\le t\le l: x=b_t (mod m_t)}| are equal for all integers x, then A and B are said to be covering equivalent. In this paper we characterize the covering equivalence in a simple and new way. Using the characterization we partially confirm a conjecture of R. L. Graham and K. O'Bryant

    Lattice congruences of the weak order

    Full text link
    We study the congruence lattice of the poset of regions of a hyperplane arrangement, with particular emphasis on the weak order on a finite Coxeter group. Our starting point is a theorem from a previous paper which gives a geometric description of the poset of join-irreducibles of the congruence lattice of the poset of regions in terms of certain polyhedral decompositions of the hyperplanes. For a finite Coxeter system (W,S) and a subset K of S, let \eta_K:w \mapsto w_K be the projection onto the parabolic subgroup W_K. We show that the fibers of \eta_K constitute the smallest lattice congruence with 1\equiv s for every s\in(S-K). We give an algorithm for determining the congruence lattice of the weak order for any finite Coxeter group and for a finite Coxeter group of type A or B we define a directed graph on subsets or signed subsets such that the transitive closure of the directed graph is the poset of join-irreducibles of the congruence lattice of the weak order.Comment: 26 pages, 4 figure

    Cambrian Lattices

    Get PDF
    For an arbitrary finite Coxeter group W we define the family of Cambrian lattices for W as quotients of the weak order on W with respect to certain lattice congruences. We associate to each Cambrian lattice a complete fan, which we conjecture is the normal fan of a polytope combinatorially isomorphic to the generalized associahedron for W. In types A and B we obtain, by means of a fiber-polytope construction, combinatorial realizations of the Cambrian lattices in terms of triangulations and in terms of permutations. Using this combinatorial information, we prove in types A and B that the Cambrian fans are combinatorially isomorphic to the normal fans of the generalized associahedra and that one of the Cambrian fans is linearly isomorphic to Fomin and Zelevinsky's construction of the normal fan as a "cluster fan." Our construction does not require a crystallographic Coxeter group and therefore suggests a definition, at least on the level of cellular spheres, of a generalized associahedron for any finite Coxeter group. The Tamari lattice is one of the Cambrian lattices of type A, and two "Tamari" lattices in type B are identified and characterized in terms of signed pattern avoidance. We also show that open intervals in Cambrian lattices are either contractible or homotopy equivalent to spheres.Comment: Revisions in exposition (partly in response to the suggestions of an anonymous referee) including many new figures. Also, Conjecture 1.4 and Theorem 1.5 are replaced by slightly more detailed statements. To appear in Adv. Math. 37 pages, 8 figure

    Intermediate problems in modular circuits satisfiability

    Full text link
    In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite algebras had been introduced and applied to sketch P versus NP-complete borderline for circuits satisfiability over algebras from congruence modular varieties. However the problem for nilpotent (which had not been shown to be NP-hard) but not supernilpotent algebras (which had been shown to be polynomial time) remained open. In this paper we provide a broad class of examples, lying in this grey area, and show that, under the Exponential Time Hypothesis and Strong Exponential Size Hypothesis (saying that Boolean circuits need exponentially many modular counting gates to produce boolean conjunctions of any arity), satisfiability over these algebras have intermediate complexity between Ω(2clogh1n)\Omega(2^{c\log^{h-1} n}) and O(2cloghn)O(2^{c\log^h n}), where hh measures how much a nilpotent algebra fails to be supernilpotent. We also sketch how these examples could be used as paradigms to fill the nilpotent versus supernilpotent gap in general. Our examples are striking in view of the natural strong connections between circuits satisfiability and Constraint Satisfaction Problem for which the dichotomy had been shown by Bulatov and Zhuk

    Satisfiability in multi-valued circuits

    Full text link
    Satisfiability of Boolean circuits is among the most known and important problems in theoretical computer science. This problem is NP-complete in general but becomes polynomial time when restricted either to monotone gates or linear gates. We go outside Boolean realm and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From the complexity point of view this is strictly connected with the problems of solving equations (or systems of equations) over finite algebras. The research reported in this work was motivated by a desire to know for which finite algebras A\mathbf A there is a polynomial time algorithm that decides if an equation over A\mathbf A has a solution. We are also looking for polynomial time algorithms that decide if two circuits over a finite algebra compute the same function. Although we have not managed to solve these problems in the most general setting we have obtained such a characterization for a very broad class of algebras from congruence modular varieties. This class includes most known and well-studied algebras such as groups, rings, modules (and their generalizations like quasigroups, loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics including MV-algebras). This paper seems to be the first systematic study of the computational complexity of satisfiability of non-Boolean circuits and solving equations over finite algebras. The characterization results provided by the paper is given in terms of nice structural properties of algebras for which the problems are solvable in polynomial time.Comment: 50 page
    corecore