1,146 research outputs found

    Revisiting the Complexity of Stability of Continuous and Hybrid Systems

    Full text link
    We develop a framework to give upper bounds on the "practical" computational complexity of stability problems for a wide range of nonlinear continuous and hybrid systems. To do so, we describe stability properties of dynamical systems using first-order formulas over the real numbers, and reduce stability problems to the delta-decision problems of these formulas. The framework allows us to obtain a precise characterization of the complexity of different notions of stability for nonlinear continuous and hybrid systems. We prove that bounded versions of the stability problems are generally decidable, and give upper bounds on their complexity. The unbounded versions are generally undecidable, for which we give upper bounds on their degrees of unsolvability

    Polynomial Time corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length

    Full text link
    We provide an implicit characterization of polynomial time computation in terms of ordinary differential equations: we characterize the class PTIME\operatorname{PTIME} of languages computable in polynomial time in terms of differential equations with polynomial right-hand side. This result gives a purely continuous (time and space) elegant and simple characterization of PTIME\operatorname{PTIME}. This is the first time such classes are characterized using only ordinary differential equations. Our characterization extends to functions computable in polynomial time over the reals in the sense of computable analysis. This extends to deterministic complexity classes above polynomial time. This may provide a new perspective on classical complexity, by giving a way to define complexity classes, like PTIME\operatorname{PTIME}, in a very simple way, without any reference to a notion of (discrete) machine. This may also provide ways to state classical questions about computational complexity via ordinary differential equations, i.e.~by using the framework of analysis

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length: The General Purpose Analog Computer and Computable Analysis Are Two Efficiently Equivalent Models of Computations

    Get PDF
    The outcomes of this paper are twofold. Implicit complexity. We provide an implicit characterization of polynomial time computation in terms of ordinary differential equations: we characterize the class P of languages computable in polynomial time in terms of differential equations with polynomial right-hand side. This result gives a purely continuous (time and space) elegant and simple characterization of P. We believe it is the first time such classes are characterized using only ordinary differential equations. Our characterization extends to functions computable in polynomial time over the reals in the sense of computable analysis. Our results may provide a new perspective on classical complexity, by giving a way to define complexity classes, like P, in a very simple way, without any reference to a notion of (discrete) machine. This may also provide ways to state classical questions about computational complexity via ordinary differential equations. Continuous-Time Models of Computation. Our results can also be interpreted in terms of analog computers or analog model of computation: As a side effect, we get that the 1941 General Purpose Analog Computer (GPAC) of Claude Shannon is provably equivalent to Turing machines both at the computability and complexity level, a fact that has never been established before. This result provides arguments in favour of a generalised form of the Church-Turing Hypothesis, which states that any physically realistic (macroscopic) computer is equivalent to Turing machines both at a computability and at a computational complexity level

    Parameterized Uniform Complexity in Numerics: from Smooth to Analytic, from NP-hard to Polytime

    Full text link
    The synthesis of classical Computational Complexity Theory with Recursive Analysis provides a quantitative foundation to reliable numerics. Here the operators of maximization, integration, and solving ordinary differential equations are known to map (even high-order differentiable) polynomial-time computable functions to instances which are `hard' for classical complexity classes NP, #P, and CH; but, restricted to analytic functions, map polynomial-time computable ones to polynomial-time computable ones -- non-uniformly! We investigate the uniform parameterized complexity of the above operators in the setting of Weihrauch's TTE and its second-order extension due to Kawamura&Cook (2010). That is, we explore which (both continuous and discrete, first and second order) information and parameters on some given f is sufficient to obtain similar data on Max(f) and int(f); and within what running time, in terms of these parameters and the guaranteed output precision 2^(-n). It turns out that Gevrey's hierarchy of functions climbing from analytic to smooth corresponds to the computational complexity of maximization growing from polytime to NP-hard. Proof techniques involve mainly the Theory of (discrete) Computation, Hard Analysis, and Information-Based Complexity

    Bounded HH_\infty-calculus for cone differential operators

    Get PDF
    We prove that parameter-elliptic extensions of cone differential operators have a bounded HH_\infty-calculus. Applications concern the Laplacian and the porous medium equation on manifolds with warped conical singularities

    Decoherence rates for Galilean covariant dynamics

    Full text link
    We introduce a measure of decoherence for a class of density operators. For Gaussian density operators in dimension one it coincides with an index used by Morikawa (1990). Spatial decoherence rates are derived for three large classes of the Galilean covariant quantum semigroups introduced by Holevo. We also characterize the relaxation to a Gaussian state for these dynamics and give a theorem for the convergence of the Wigner function to the probability distribution of the classical analog of the process.Comment: 23 page
    corecore