71 research outputs found

    Generalized roof duality and bisubmodular functions

    Full text link
    Consider a convex relaxation f^\hat f of a pseudo-boolean function ff. We say that the relaxation is {\em totally half-integral} if f^(x)\hat f(x) is a polyhedral function with half-integral extreme points xx, and this property is preserved after adding an arbitrary combination of constraints of the form xi=xjx_i=x_j, xi=1−xjx_i=1-x_j, and xi=γx_i=\gamma where \gamma\in\{0, 1, 1/2} is a constant. A well-known example is the {\em roof duality} relaxation for quadratic pseudo-boolean functions ff. We argue that total half-integrality is a natural requirement for generalizations of roof duality to arbitrary pseudo-boolean functions. Our contributions are as follows. First, we provide a complete characterization of totally half-integral relaxations f^\hat f by establishing a one-to-one correspondence with {\em bisubmodular functions}. Second, we give a new characterization of bisubmodular functions. Finally, we show some relationships between general totally half-integral relaxations and relaxations based on the roof duality.Comment: 14 pages. Shorter version to appear in NIPS 201

    Half-integrality, LP-branching and FPT Algorithms

    Full text link
    A recent trend in parameterized algorithms is the application of polytope tools (specifically, LP-branching) to FPT algorithms (e.g., Cygan et al., 2011; Narayanaswamy et al., 2012). However, although interesting results have been achieved, the methods require the underlying polytope to have very restrictive properties (half-integrality and persistence), which are known only for few problems (essentially Vertex Cover (Nemhauser and Trotter, 1975) and Node Multiway Cut (Garg et al., 1994)). Taking a slightly different approach, we view half-integrality as a \emph{discrete} relaxation of a problem, e.g., a relaxation of the search space from {0,1}V\{0,1\}^V to {0,1/2,1}V\{0,1/2,1\}^V such that the new problem admits a polynomial-time exact solution. Using tools from CSP (in particular Thapper and \v{Z}ivn\'y, 2012) to study the existence of such relaxations, we provide a much broader class of half-integral polytopes with the required properties, unifying and extending previously known cases. In addition to the insight into problems with half-integral relaxations, our results yield a range of new and improved FPT algorithms, including an O∗(∣Σ∣2k)O^*(|\Sigma|^{2k})-time algorithm for node-deletion Unique Label Cover with label set Σ\Sigma and an O∗(4k)O^*(4^k)-time algorithm for Group Feedback Vertex Set, including the setting where the group is only given by oracle access. All these significantly improve on previous results. The latter result also implies the first single-exponential time FPT algorithm for Subset Feedback Vertex Set, answering an open question of Cygan et al. (2012). Additionally, we propose a network flow-based approach to solve some cases of the relaxation problem. This gives the first linear-time FPT algorithm to edge-deletion Unique Label Cover.Comment: Added results on linear-time FPT algorithms (not present in SODA paper

    Signed ring families and signed posets

    Get PDF
    The one-to-one correspondence between finite distributive lattices and finite partially ordered sets (posets) is a well-known theorem of G. Birkhoff. This implies a nice representation of any distributive lattice by its corresponding poset, where the size of the former (distributive lattice) is often exponential in the size of the underlying set of the latter (poset). A lot of engineering and economic applications bring us distributive lattices as a ring family of sets which is closed with respect to the set union and intersection. When it comes to a ring family of sets, the underlying set is partitioned into subsets (or components) and we have a poset structure on the partition. This is a set-theoretical variant of the Birkhoff theorem revealing the correspondence between finite ring families and finite posets on partitions of the underlying sets, which was pursued by Masao Iri around 1978, especially concerned with what is called the principal partition of discrete systems such as graphs, matroids, and polymatroids. In the present paper we investigate a signed-set version of the Birkhoff-Iri decomposition in terms of signed ring family, which corresponds to Reiner's result on signed posets, a signed counterpart of the Birkhoff theorem. We show that given a signed ring family, we have a signed partition of the underlying set together with a signed poset on the signed partition which represents the given signed ring family. This representation is unique up to certain reflections

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems

    Polynomial combinatorial algorithms for skew-bisubmodular function minimization

    Get PDF
    Huber et al. (SIAM J Comput 43:1064–1084, 2014) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain, and Huber and Krokhin (SIAM J Discrete Math 28:1828–1837, 2014) showed the oracle tractability of minimization of skew-bisubmodular functions. Fujishige et al. (Discrete Optim 12:1–9, 2014) also showed a min–max theorem that characterizes the skew-bisubmodular function minimization, but devising a combinatorial polynomial algorithm for skew-bisubmodular function minimization was left open. In the present paper we give first combinatorial (weakly and strongly) polynomial algorithms for skew-bisubmodular function minimization

    The power of linear programming for general-valued CSPs

    Full text link
    Let DD, called the domain, be a fixed finite set and let Γ\Gamma, called the valued constraint language, be a fixed set of functions of the form f:Dm→QâˆȘ{∞}f:D^m\to\mathbb{Q}\cup\{\infty\}, where different functions might have different arity mm. We study the valued constraint satisfaction problem parametrised by Γ\Gamma, denoted by VCSP(Γ)(\Gamma). These are minimisation problems given by nn variables and the objective function given by a sum of functions from Γ\Gamma, each depending on a subset of the nn variables. Finite-valued constraint languages contain functions that take on only rational values and not infinite values. Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued constraint language Γ\Gamma, BLP is a decision procedure for Γ\Gamma if and only if Γ\Gamma admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ\Gamma, BLP is a decision procedure if and only if Γ\Gamma admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ\Gamma admits a symmetric fractional polymorphism of arity 2. Using these results, we obtain tractability of several novel classes of problems, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) kk-submodular on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: A full version of a FOCS'12 paper by the last two authors (arXiv:1204.1079) and an ICALP'13 paper by the first author (arXiv:1207.7213) to appear in SIAM Journal on Computing (SICOMP

    Rank functions and invariants of delta-matroids

    Full text link
    In this note, we give a rank function axiomatization for delta-matroids and study the corresponding rank generating function. We relate an evaluation of the rank generating function to the number of independent sets of the delta-matroid, and we prove a log-concavity result for that evaluation using the theory of Lorentzian polynomials
    • 

    corecore