3,076 research outputs found

    A characterisation of generically rigid frameworks on surfaces of revolution

    Get PDF
    A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in three dimensions whose vertices are constrained to concentric spheres or to concentric cylinders. Noting that the plane and the sphere have 3 independent locally tangential infinitesimal motions while the cylinder has 2, we obtain here a Laman-Henneberg theorem for frameworks on algebraic surfaces with a 1-dimensional space of tangential motions. Such surfaces include the torus, helicoids and surfaces of revolution. The relevant class of graphs are the (2,1)-tight graphs, in contrast to (2,3)-tightness for the plane/sphere and (2,2)-tightness for the cylinder. The proof uses a new characterisation of simple (2,1)-tight graphs and an inductive construction requiring generic rigidity preservation for 5 graph moves, including the two Henneberg moves, an edge joining move and various vertex surgery moves.Comment: 23 pages, 5 figures. Minor revisions - most importantly, the new version has a different titl

    One brick at a time: a survey of inductive constructions in rigidity theory

    Full text link
    We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. We summarize the key outstanding open problems related to inductions.Comment: 24 pages, 12 figures, final versio

    Rigidity of Frameworks Supported on Surfaces

    Get PDF
    A theorem of Laman gives a combinatorial characterisation of the graphs that admit a realisation as a minimally rigid generic bar-joint framework in \bR^2. A more general theory is developed for frameworks in \bR^3 whose vertices are constrained to move on a two-dimensional smooth submanifold \M. Furthermore, when \M is a union of concentric spheres, or a union of parallel planes or a union of concentric cylinders, necessary and sufficient combinatorial conditions are obtained for the minimal rigidity of generic frameworks.Comment: Final version, 28 pages, with new figure

    Maxwell-Laman counts for bar-joint frameworks in normed spaces

    Get PDF
    The rigidity matrix is a fundamental tool for studying the infinitesimal rigidity properties of Euclidean bar-joint frameworks. In this paper we generalize this tool and introduce a rigidity matrix for bar-joint frameworks in arbitrary finite dimensional real normed vector spaces. Using this new matrix, we derive necessary Maxwell-Laman-type counting conditions for a well-positioned bar-joint framework in a real normed vector space to be infinitesimally rigid. Moreover, we derive symmetry-extended counting conditions for a bar-joint framework with a non-trivial symmetry group to be isostatic (i.e., minimally infinitesimally rigid). These conditions imply very simply stated restrictions on the number of those structural components that are fixed by the various symmetry operations of the framework. Finally, we offer some observations and conjectures regarding combinatorial characterisations of 2-dimensional symmetric, isostatic bar-joint frameworks where the unit ball is a quadrilateral.Comment: 17 page

    The rigidity of infinite graphs

    Full text link
    A rigidity theory is developed for the Euclidean and non-Euclidean placements of countably infinite simple graphs in R^d with respect to the classical l^p norms, for d>1 and 1<p<\infty. Generalisations are obtained for the Laman and Henneberg combinatorial characterisations of generic infinitesimal rigidity for finite graphs in the Euclidean plane. Also Tay's multi-graph characterisation of the rigidity of generic finite body-bar frameworks in d-dimensional Euclidean space is generalised to the non-Euclidean l^p norms and to countably infinite graphs. For all dimensions and norms it is shown that a generically rigid countable simple graph is the direct limit of an inclusion tower of finite graphs for which the inclusions satisfy a relative rigidity property. For d>2 a countable graph which is rigid for generic placements in R^d may fail the stronger property of sequential rigidity, while for d=2 the equivalence with sequential rigidity is obtained from the generalised Laman characterisations. Applications are given to the flexibility of non-Euclidean convex polyhedra and to the infinitesimal and continuous rigidity of compact infinitely-faceted simplicial polytopes.Comment: 51 page

    Finite and infinitesimal rigidity with polyhedral norms

    Get PDF
    We characterise finite and infinitesimal rigidity for bar-joint frameworks in R^d with respect to polyhedral norms (i.e. norms with closed unit ball P a convex d-dimensional polytope). Infinitesimal and continuous rigidity are shown to be equivalent for finite frameworks in R^d which are well-positioned with respect to P. An edge-labelling determined by the facets of the unit ball and placement of the framework is used to characterise infinitesimal rigidity in R^d in terms of monochrome spanning trees. An analogue of Laman's theorem is obtained for all polyhedral norms on R^2.Comment: 26 page

    A characterization of generically rigid frameworks on surfaces of revolution

    Get PDF
    A foundational theorem of Laman provides a counting characterization of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterization was obtained for frameworks in three dimensions whose vertices are constrained to concentric spheres or to concentric cylinders. Noting that the plane and the sphere have 3 independent locally tangential infinitesimal motions while the cylinder has 2, we obtain here a Laman-type theorem for frameworks on algebraic surfaces with a 1-dimensional space of tangential motions. Such surfaces include the torus, helicoids, and surfaces of revolution. The relevant class of graphs are the (2,1)-tight graphs, in contrast to (2,3)-tightness for the plane/sphere and (2,2)-tightness for the cylinder. The proof uses a new characterization of simple (2,1)-tight graphs and an inductive construction requiring generic rigidity preservation for 5 graph moves, including the two Henneberg moves, an edge joining move, and various vertex surgery moves. Read More: http://epubs.siam.org/doi/abs/10.1137/13091319
    • …
    corecore