4,298 research outputs found

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Dynamics of Oscillators Coupled by a Medium with Adaptive Impact

    Get PDF
    In this article we study the dynamics of coupled oscillators. We use mechanical metronomes that are placed over a rigid base. The base moves by a motor in a one-dimensional direction and the movements of the base follow some functions of the phases of the metronomes (in other words, it is controlled to move according to a provided function). Because of the motor and the feedback, the phases of the metronomes affect the movements of the base while on the other hand, when the base moves, it affects the phases of the metronomes in return. For a simple function for the base movement (such as y=γx[rθ1+(1r)θ2]y = \gamma_{x} [r \theta_1 + (1 - r) \theta_2] in which yy is the velocity of the base, γx\gamma_{x} is a multiplier, rr is a proportion and θ1\theta_1 and θ2\theta_2 are phases of the metronomes), we show the effects on the dynamics of the oscillators. Then we study how this function changes in time when its parameters adapt by a feedback. By numerical simulations and experimental tests, we show that the dynamic of the set of oscillators and the base tends to evolve towards a certain region. This region is close to a transition in dynamics of the oscillators; where more frequencies start to appear in the frequency spectra of the phases of the metronomes

    Uncalibrated Dynamic Mechanical System Controller

    Get PDF
    An apparatus and method for enabling an uncalibrated, model independent controller for a mechanical system using a dynamic quasi-Newton algorithm which incorporates velocity components of any moving system parameter(s) is provided. In the preferred embodiment, tracking of a moving target by a robot having multiple degrees of freedom is achieved using an uncalibrated model independent visual servo control. Model independent visual servo control is defined as using visual feedback to control a robot's servomotors without a precisely calibrated kinematic robot model or camera model. A processor updates a Jacobian and a controller provides control signals such that the robot's end effector is directed to a desired location relative to a target on a workpiece.Georgia Tech Research Corporatio

    The future of camera networks: staying smart in a chaotic world

    Get PDF
    Camera networks become smart when they can interpret video data on board, in order to carry out tasks as a collective, such as target tracking and (re-)identi cation of objects of interest. Unlike today’s deployments, which are mainly restricted to lab settings and highly controlled high-value applications, future smart camera networks will be messy and unpredictable. They will operate on a vast scale, drawing on mobile resources connected in networks structured in complex and changing ways. They will comprise heterogeneous and decentralised aggregations of visual sensors, which will come together in temporary alliances, in unforeseen and rapidly unfolding scenarios. The potential to include and harness citizen-contributed mobile streaming, body-worn video, and robot- mounted cameras, alongside more traditional xed or PTZ cameras, and supported by other non-visual sensors, leads to a number of di cult and important challenges. In this position paper, we discuss a variety of potential uses for such complex smart camera networks, and some of the challenges that arise when staying smart in the presence of such complexity. We present a general discussion on the challenges of heterogeneity, coordination, self-recon gurability, mobility, and collaboration in camera networks

    Low-Cost Inventions and Patents

    Get PDF
    Inventions have led to the technological advances of mankind. There are inventions of all kinds, some of which have lasted hundreds of years or even longer. Low-cost technologies are expected to be easy to build, have little or no energy consumption, and be easy to maintain and operate. The use of sustainable technologies is essential in order to move towards a greater global coverage of technology, and therefore to improve human quality of life. Low-cost products always respond to a specific need, even if no in-depth analysis of the situation or possible solutions has been carried out. It is a consensus in all industrialized countries that patents have a decisive influence on the organization of the economy, as they are a key element in promoting technological innovation. Patents must aim to promote the technological development of countries, starting from their industrial situations

    Towards modeling complex robot training tasks through system identification

    Get PDF
    Previous research has shown that sensor-motor tasks in mobile robotics applications can be modelled automatically, using NARMAX system identi�cation, where the sensory perception of the robot is mapped to the desired motor commands using non-linear polynomial functions, resulting in a tight coupling between sensing and acting | the robot responds directly to the sensor stimuli without having internal states or memory. However, competences such as for instance sequences of actions, where actions depend on each other, require memory and thus a representation of state. In these cases a simple direct link between sensory perception and the motor commands may not be enough to accomplish the desired tasks. The contribution to knowledge of this paper is to show how fundamental, simple NARMAX models of behaviour can be used in a bootstrapping process to generate complex behaviours that were so far beyond reach. We argue that as the complexity of the task increases, it is important to estimate the current state of the robot and integrate this information into the system identification process. To achieve this we propose a novel method which relates distinctive locations in the environment to the state of the robot, using an unsupervised clustering algorithm. Once we estimate the current state of the robot accurately, we combine the state information with the perception of the robot through a bootstrapping method to generate more complex robot tasks: We obtain a polynomial model which models the complex task as a function of predefined low level sensor motor controllers and raw sensory data. The proposed method has been used to teach Scitos G5 mobile robots a number of complex tasks, such as advanced obstacle avoidance, or complex route learning

    Multimodal human hand motion sensing and analysis - a review

    Get PDF
    corecore