39 research outputs found

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    IoT-Based Multi-Dimensional Chaos Mapping System for Secure and Fast Transmission of Visual Data in Smart Cities

    Get PDF
    A “smart city” sends data from many sensors to a cloud server for local authorities and the public to connect. Smart city residents communicate mostly through images and videos. Many image security algorithms have been proposed to improve locals’ lives, but a high-class redundancy method with a small space requirement is still needed to acquire and protect this sensitive data. This paper proposes an IoT-based multi-dimensional chaos mapping system for secure and fast transmission of visual data in smart cities, which uses the five dimensional Gauss Sine Logistic system to generate hyper-chaotic sequences to encrypt images. The proposed method also uses pixel position permutation and Singular Value Decomposition with Discrete fractional cosine transform to compress and protect the sensitive image data. To increase security, we use a chaotic system to construct the chaotic sequences and a diffusion matrix. Furthermore, numerical simulation results and theoretical evaluations validate the suggested scheme’s security and efficacy after compression encryption.publishedVersio

    9/7 LIFT Reconfigurable Architecture Implementation for Image Authentication

    Get PDF
    Considering the information system medical images are the most sensitive and critical types of data. Transferring medical images over the internet requires the use of authentication algorithms that are resistant to attacks. Another aspect is confidentiality for secure storage and transfer of medical images. The proposed study presents an embedding technique to improve the security of medical images. As a part of preprocessing that involves removing the high-frequency components, Gaussian filters are used. To get LL band features CDF9/7 wavelet is employed. In a similar way, for the cover image, the LL band features are obtained. In order to get the 1st level of encryption the technique of alpha blending is used. It combines the LL band features of the secret image and cover images whereas LH, HL, and HH bands are applied to Inverse CDF 9/7. The resulting encrypted image along with the key obtained through LH, HL, and HH bands is transferred. The produced key adds an extra layer of protection, and similarly, the receiver does the reverse action to acquire the original secret image. The PSNR acquired from the suggested technique is compared to PSNR obtained from existing techniques to validate the results. Performance is quantified in terms of PSNR. A Spartan 6 FPGA board is used to synthesize the complete architecture in order to compare hardware consumption

    On the Development of Novel Encryption Methods for Conventional and Biometric Images

    Get PDF
    Information security refers to the technique of protecting information from unauthorized access, use, disclosure, disruption and modification. Governments, military, corporations, financial institutions, hospitals, and private businesses amass a great deal of confidential information about their employees, customers, products, research, and financial status. Most of this information is now collected, processed and stored on electronic media and transmitted across networks to other computers. Encryption clearly addresses the need for confidentiality of information, in process of storage and transmission. Popular application of multimedia technology and increasingly transmission ability of network gradually leads us to acquire information directly and clearly through images and hence the security of image data has become inevitable. Moreover in the recent years, biometrics is gaining popularity for security purposes in many applications. However, during communication and transmission over insecure network channels it has some risks of being hacked, modified and reused. Hence, there is a strong need to protect biometric images during communication and transmission. In this thesis, attempts have been made to encrypt image efficiently and to enhance the security of biometrics images during transmission. In the first contribution, three different key matrix generation methods invertible, involuntary, and permutation key matrix generation have been proposed. Invertible and involuntary key matrix generation methods solves the key matrix inversion problem in Hill cipher. Permutation key matrix generation method increases the Hill system’s security. The conventional Hill cipher technique fails to encrypt images properly if the image consists of large area covered with same colour or gray level. Thus, it does not hide all features of the image which reveals patterns in the plaintext. Moreover, it can be easily broken with a known plaintext attack revealing weak security. To address these issues two different techniques are proposed, those are advanced Hill cipher algorithm and H-S-X cryptosystem to encrypt the images properly. Security analysis of both the techniques reveals superiority of encryption and decryption of images. On the other hand, H-S-X cryptosystem has been used to instil more diffusion and confusion on the cryptanalysis. FPGA implementation of both the proposed techniques has been modeled to show the effectiveness of both the techniques. An extended Hill cipher algorithm based on XOR and zigzag operation is designed to reduce both encryption and decryption time. This technique not only reduces the encryption and decryption time but also ensures no loss of data during encryption and decryption process as compared to other techniques and possesses more resistance to intruder attack. The hybrid cryptosystem which is the combination of extended Hill cipher technique and RSA algorithm has been implemented to solve the key distribution problem and to enhance the security with reduced encryption and decryption time. Two distinct approaches for image encryption are proposed using chaos based DNA coding along with shifting and scrambling or poker shuffle to create grand disorder between the pixels of the images. In the first approach, results obtained from chaos based DNA coding scheme is shifted and scrambled to provide encryption. On the other hand in the second approach the results obtained from chaos based DNA coding encryption is followed by poker shuffle operation to generate the final result. Simulated results suggest performance superiority for encryption and decryption of image and the results obtained have been compared and discussed. Later on FPGA implementation of proposed cryptosystem has been performed. In another contribution, a modified Hill cipher is proposed which is the combination of three techniques. This proposed modified Hill cipher takes advantage of all the three techniques. To acquire the demands of authenticity, integrity, and non-repudiation along with confidentiality, a novel hybrid method has been implemented. This method has employed proposed modified Hill cipher to provide confidentiality. Produced message digest encrypted by private key of RSA algorithm to achieve other features such as authenticity, integrity, and non-repudiation To enhance the security of images, a biometric cryptosystem approach that combines cryptography and biometrics has been proposed. Under this approach, the image is encrypted with the help of fingerprint and password. A key generated with the combination of fingerprint and password and is used for image encryption. This mechanism is seen to enhance the security of biometrics images during transmission. Each proposed algorithm is studied separately, and simulation experiments are conducted to evaluate their performance. The security analyses are performed and performance compared with other competent schemes

    A Novel Secure Occupancy Monitoring Scheme Based on Multi-Chaos Mapping

    Get PDF
    Smart building control, managing queues for instant points of service, security systems, and customer support can benefit from the number of occupants information known as occupancy. Due to interrupted real-time continuous monitoring capabilities of state-of-the-art cameras, a vision-based system can be easily deployed for occupancy monitoring. However, processing of images or videos over insecure channels can raise several privacy concerns due to constant recording of an image or video footage. In this context, occupancy monitoring along with privacy protection is a challenging task. This paper presents a novel chaos-based lightweight privacy preserved occupancy monitoring scheme. Persons’ movements were detected using a Gaussian mixture model and Kalman filtering. A specific region of interest, i.e., persons’ faces and bodies, was encrypted using multi-chaos mapping. For pixel encryption, Intertwining and Chebyshev maps were employed in confusion and diffusion processes, respectively. The number of people was counted and the occupancy information was sent to the ThingSpeak cloud platform. The proposed chaos-based lightweight occupancy monitoring system is tested against numerous security metrics such as correlation, entropy, Number of Pixel Changing Rate (NPCR), Normalized Cross Correlation (NCC), Structural Content (SC), Mean Absolute Error (MAE), Mean Square Error (MSE), Peak to Signal Noise Ratio (PSNR), and Time Complexity (TC). All security metrics confirm the strength of the proposed scheme

    Lightweight image encryption algorithms: design and evaluation

    Get PDF
    Doctor of PhilosophyDepartment of Computer ScienceArslan MunirIn an era dominated by increasing use of multimedia data such as images and videos, ensuring the security and confidentiality of images with real-time encryption is of greatest importance. Traditional encryption algorithms are secure, widely used, and recommended, yet they are not suitable nor computationally efficient for encrypting multimedia data due to the large size and high redundancy inherent in multimedia data. Thus, specialized algorithms for multimedia data encryption are needed. This dissertation explores lightweight image encryption algorithms, specifically designed to address time and resource constraints of realtime image encryption while maintaining the confidentiality and integrity of the multimedia data. The dissertation classifies image encryption based on the techniques used into seven different approaches and analyzes the strengths and weaknesses of each approach. It subsequently introduces and evaluates three novel algorithms designed to encrypt images with low complexity, high efficiency, and reliable security. These algorithms rely on a combination of permutation, substitution, and pseudorandom keystreams to ensure the security of the encrypted images. The first algorithm is based on chaotic systems. The algorithm is implemented using logistic map, permutations, AES S-box, and a plaintext related SHA-2 hash. The second algorithm is based on Trivium cipher. the algorithm is implemented to work on multi-rounds of encryption using pixel-based row and column permutations, and bit-level substitution. For the third algorithm, the Ascon algorithm selected by the National Institute of Standards and Technology (NIST) to standardize lightweight cryptography applications is evaluated for image encryption. To evaluate the proposed algorithms, a comprehensive set of security, quality, and efficiency valuation metrics is utilized to assess the proposed algorithms and compare them to contemporary image encryption algorithms

    Image encryption techniques: A comprehensive review

    Get PDF
    This paper presents an exhaustive review of research within the field of image encryption techniques. It commences with a general introduction to image encryption, providing an overview of the fundamentals. Subsequently, it explores a comprehensive exploration of chaos-based image encryption, encompassing various methods and approaches within this domain. These methods include full encryption techniques as well as selective encryption strategies, offering insights into their principles and applications. The authors place significant emphasis on surveying prior research contributions, shedding light on noteworthy developments within the field. Additionally, the paper addresses emerging challenges and issues that have arisen as a consequence of these advancements

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Optimisation of Tamper Localisation and Recovery Watermarking Techniques

    Get PDF
    Digital watermarking has found many applications in many fields, such as: copyright tracking, media authentication, tamper localisation and recovery, hardware control, and data hiding. The idea of digital watermarking is to embed arbitrary data inside a multimedia cover without affecting the perceptibility of the multimedia cover itself. The main advantage of using digital watermarking over other techniques, such as signature based techniques, is that the watermark is embedded into the multimedia cover itself and will not be removed even with the format change. Image watermarking techniques are categorised according to their robustness against modification into: fragile, semi-fragile, and robust watermarking. In fragile watermarking any change to the image will affect the watermark, this makes fragile watermarking very useful in image authentication applications, as in medical and forensic fields, where any tampering of the image is: detected, localised, and possibly recovered. Fragile watermarking techniques are also characterised by a higher capacity when compared to semi-fragile and robust watermarking. Semifragile watermarking techniques resist some modifications, such as lossy compression and low pass filtering. Semi-fragile watermarking can be used in authentication and copyright validation applications whenever the amount of embedded information is small and the expected modifications are not severe. Robust watermarking techniques are supposed to withstand more severe modifications, such as rotation and geometrical bending. Robust watermarking is used in copyright validation applications, where copyright information in the image must remains accessible even after severe modification. This research focuses on the application of image watermarking in tamper localisation and recovery and it aims to provide optimisation for some of its aspects. The optimisation aims to produce watermarking techniques that enhance one or more of the following aspects: consuming less payload, having better recovery quality, recovering larger tampered area, requiring less calculations, and being robust against the different counterfeiting attacks. Through the survey of the main existing techniques, it was found that most of them are using two separate sets of data for the localisation and the recovery of the tampered area, which is considered as a redundancy. The main focus in this research is to investigate employing image filtering techniques in order to use only one set of data for both purposes, leading to a reduced redundancy in the watermark embedding and enhanced capacity. Four tamper localisation and recovery techniques were proposed, three of them use one set of data for localisation and recovery while the fourth one is designed to be optimised and gives a better performance even though it uses separate sets of data for localisation and recovery. The four techniques were analysed and compared to two recent techniques in the literature. The performance of the proposed techniques vary from one technique to another. The fourth technique shows the best results regarding recovery quality and Probability of False Acceptance (PFA) when compared to the other proposed techniques and the two techniques in the literature, also, all proposed techniques show better recovery quality when compared to the two techniques in the literature

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers
    corecore