35 research outputs found

    Covert Bits Through Queues

    Full text link
    We consider covert communication using a queuing timing channel in the presence of a warden. The covert message is encoded using the inter-arrival times of the packets, and the legitimate receiver and the warden observe the inter-departure times of the packets from their respective queues. The transmitter and the legitimate receiver also share a secret key to facilitate covert communication. We propose achievable schemes that obtain non-zero covert rate for both exponential and general queues when a sufficiently high rate secret key is available. This is in contrast to other channel models such as the Gaussian channel or the discrete memoryless channel where only O(n)\mathcal{O}(\sqrt{n}) covert bits can be sent over nn channel uses, yielding a zero covert rate.Comment: To appear at IEEE CNS, October 201

    Empirical and Strong Coordination via Soft Covering with Polar Codes

    Full text link
    We design polar codes for empirical coordination and strong coordination in two-node networks. Our constructions hinge on the fact that polar codes enable explicit low-complexity schemes for soft covering. We leverage this property to propose explicit and low-complexity coding schemes that achieve the capacity regions of both empirical coordination and strong coordination for sequences of actions taking value in an alphabet of prime cardinality. Our results improve previously known polar coding schemes, which (i) were restricted to uniform distributions and to actions obtained via binary symmetric channels for strong coordination, (ii) required a non-negligible amount of common randomness for empirical coordination, and (iii) assumed that the simulation of discrete memoryless channels could be perfectly implemented. As a by-product of our results, we obtain a polar coding scheme that achieves channel resolvability for an arbitrary discrete memoryless channel whose input alphabet has prime cardinality.Comment: 14 pages, two-column, 5 figures, accepted to IEEE Transactions on Information Theor

    Optimal Throughput for Covert Communication Over a Classical-Quantum Channel

    Full text link
    This paper considers the problem of communication over a memoryless classical-quantum wiretap channel subject to the constraint that the eavesdropper on the channel should not be able to learn whether the legitimate parties are using the channel to communicate or not. Specifically, the relative entropy between the output quantum states at the eavesdropper when a codeword is transmitted and when no input is provided must be sufficiently small. Extending earlier works, this paper proves the "square-root law" for a broad class of classical-quantum channels: the maximum amount of information that can be reliably and covertly transmitted over nn uses of such a channel scales like n\sqrt{n}. The scaling constant is also determined.Comment: Corrected version of a paper presented at ITW 2016. In the ITW paper, the denominator in the main formula (10) was incorrect. The current version corrects this mistake and adds an appendix for its derivatio

    Stealthy Secret Key Generation

    Get PDF
    In order to make a warden, Willie, unaware of the existence of meaningful communications, there have been different schemes proposed including covert and stealth communications. When legitimate users have no channel advantage over Willie, the legitimate users may need additional secret keys to confuse Willie, if the stealth or covert communication is still possible. However, secret key generation (SKG) may raise Willie’s attention since it has a public discussion, which is observable by Willie. To prevent Willie’s attention, we consider the source model for SKG under a strong secrecy constraint, which has further to fulfill a stealth constraint. Our first contribution is that, if the stochastic dependence between the observations at Alice and Bob fulfills the strict more capable criterion with respect to the stochastic dependence between the observations at Alice and Willie or between Bob and Willie, then a positive stealthy secret key rate is identical to the one without the stealth constraint. Our second contribution is that, if the random variables observed at Alice, Bob, and Willie induced by the common random source form a Markov chain, then the key capacity of the source model SKG with the strong secrecy constraint and the stealth constraint is equal to the key capacity with the strong secrecy constraint, but without the stealth constraint. For the case of fast fading models, a sufficient condition for the existence of an equivalent model, which is degraded, is provided, based on stochastic orders. Furthermore, we present an example to illustrate our results.BMBF, 16KIS1004, Verbundprojekt: Post Shannon Kommunikation - NewCom -; Teilvorhaben: Physikalische Dienste-Integrations-Konzepte für neue Kommunikationsmodell

    Fundamental Limits of Communication with Low Probability of Detection

    Full text link
    This paper considers the problem of communication over a discrete memoryless channel (DMC) or an additive white Gaussian noise (AWGN) channel subject to the constraint that the probability that an adversary who observes the channel outputs can detect the communication is low. Specifically, the relative entropy between the output distributions when a codeword is transmitted and when no input is provided to the channel must be sufficiently small. For a DMC whose output distribution induced by the "off" input symbol is not a mixture of the output distributions induced by other input symbols, it is shown that the maximum amount of information that can be transmitted under this criterion scales like the square root of the blocklength. The same is true for the AWGN channel. Exact expressions for the scaling constant are also derived.Comment: Version to appear in IEEE Transactions on Information Theory; minor typos in v2 corrected. Part of this work was presented at ISIT 2015 in Hong Kon
    corecore