180 research outputs found

    Design and implementation of a downlink MC-CDMA receiver

    Get PDF
    Cette thèse présente une étude d'un système complet de transmission en liaison descendante utilisant la technologie multi-porteuse avec l'accès multiple par division de code (Multi-Carrier Code Division Multiple Access, MC-CDMA). L'étude inclut la synchronisation et l'estimation du canal pour un système MC-CDMA en liaison descendante ainsi que l'implémentation sur puce FPGA d'un récepteur MC-CDMA en liaison descendante en bande de base. Le MC-CDMA est une combinaison de la technique de multiplexage par fréquence orthogonale (Orthogonal Frequency Division Multiplexing, OFDM) et de l'accès multiple par répartition de code (CDMA), et ce dans le but d'intégrer les deux technologies. Le système MC-CDMA est conçu pour fonctionner à l'intérieur de la contrainte d'une bande de fréquence de 5 MHz pour les modèles de canaux intérieur/extérieur pédestre et véhiculaire tel que décrit par le "Third Genaration Partnership Project" (3GPP). La composante OFDM du système MC-CDMA a été simulée en utilisant le logiciel MATLAB dans le but d'obtenir des paramètres de base. Des codes orthogonaux à facteur d'étalement variable (OVSF) de longueur 8 ont été choisis comme codes d'étalement pour notre système MC-CDMA. Ceci permet de supporter des taux de transmission maximum jusquà 20.6 Mbps et 22.875 Mbps (données non codées, pleine charge de 8 utilisateurs) pour les canaux intérieur/extérieur pédestre et véhiculaire, respectivement. Une étude analytique des expressions de taux d'erreur binaire pour le MC-CDMA dans un canal multivoies de Rayleigh a été réalisée dans le but d'évaluer rapidement et de façon précise les performances. Des techniques d'estimation de canal basées sur les décisions antérieures ont été étudiées afin d'améliorer encore plus les performances de taux d'erreur binaire du système MC-CDMA en liaison descendante. L'estimateur de canal basé sur les décisions antérieures et utilisant le critère de l'erreur quadratique minimale linéaire avec une matrice' de corrélation du canal de taille 64 x 64 a été choisi comme étant un bon compromis entre la performance et la complexité pour une implementation sur puce FPGA. Une nouvelle séquence d'apprentissage a été conçue pour le récepteur dans la configuration intérieur/extérieur pédestre dans le but d'estimer de façon grossière le temps de synchronisation et le décalage fréquentiel fractionnaire de la porteuse dans le domaine du temps. Les estimations fines du temps de synchronisation et du décalage fréquentiel de la porteuse ont été effectués dans le domaine des fréquences à l'aide de sous-porteuses pilotes. Un récepteur en liaison descendante MC-CDMA complet pour le canal intérieur /extérieur pédestre avec les synchronisations en temps et en fréquence en boucle fermée a été simulé avant de procéder à l'implémentation matérielle. Le récepteur en liaison descendante en bande de base pour le canal intérieur/extérieur pédestre a été implémenté sur un système de développement fabriqué par la compagnie Nallatech et utilisant le circuit XtremeDSP de Xilinx. Un transmetteur compatible avec le système de réception a également été réalisé. Des tests fonctionnels du récepteur ont été effectués dans un environnement sans fil statique de laboratoire. Un environnement de test plus dynamique, incluant la mobilité du transmetteur, du récepteur ou des éléments dispersifs, aurait été souhaitable, mais n'a pu être réalisé étant donné les difficultés logistiques inhérentes. Les taux d'erreur binaire mesurés avec différents nombres d'usagers actifs et différentes modulations sont proches des simulations sur ordinateurs pour un canal avec bruit blanc gaussien additif

    Datacenter Design for Future Cloud Radio Access Network.

    Full text link
    Cloud radio access network (C-RAN), an emerging cloud service that combines the traditional radio access network (RAN) with cloud computing technology, has been proposed as a solution to handle the growing energy consumption and cost of the traditional RAN. Through aggregating baseband units (BBUs) in a centralized cloud datacenter, C-RAN reduces energy and cost, and improves wireless throughput and quality of service. However, designing a datacenter for C-RAN has not yet been studied. In this dissertation, I investigate how a datacenter for C-RAN BBUs should be built on commodity servers. I first design WiBench, an open-source benchmark suite containing the key signal processing kernels of many mainstream wireless protocols, and study its characteristics. The characterization study shows that there is abundant data level parallelism (DLP) and thread level parallelism (TLP). Based on this result, I then develop high performance software implementations of C-RAN BBU kernels in C++ and CUDA for both CPUs and GPUs. In addition, I generalize the GPU parallelization techniques of the Turbo decoder to the trellis algorithms, an important family of algorithms that are widely used in data compression and channel coding. Then I evaluate the performance of commodity CPU servers and GPU servers. The study shows that the datacenter with GPU servers can meet the LTE standard throughput with 4× to 16× fewer machines than with CPU servers. A further energy and cost analysis show that GPU servers can save on average 13× more energy and 6× more cost. Thus, I propose the C-RAN datacenter be built using GPUs as a server platform. Next I study resource management techniques to handle the temporal and spatial traffic imbalance in a C-RAN datacenter. I propose a “hill-climbing” power management that combines powering-off GPUs and DVFS to match the temporal C-RAN traffic pattern. Under a practical traffic model, this technique saves 40% of the BBU energy in a GPU-based C-RAN datacenter. For spatial traffic imbalance, I propose three workload distribution techniques to improve load balance and throughput. Among all three techniques, pipelining packets has the most throughput improvement at 10% and 16% for balanced and unbalanced loads, respectively.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120825/1/qizheng_1.pd

    Implementing carrier recovery for LTE 20 MHz on transport triggered architecture

    Get PDF
    Synchronization is a critical function in digital communications. Its failure may cause catastrophic effects on the transmission system performance. It is very important that the receiver is synchronised with the transmitter because it is not possible to correct frequencies/phases without any control mechanisms. Synchronization is different in Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) for uplink and downlink because of the choice of multiple access scheme. Multiple access scheme for LTE downlink is Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier-Frequency Division Multiple Access (SC-FDMA) for the uplink. OFDMA is susceptible to Carrier Frequency Offset (CFO). In case of a typical LTE system with a carrier frequency of 2.1 GHz, a frequency drift of 10ppm (10Ă—10-6) of the local oscillator can cause an offset of 21 kHz. LTE system employs a fixed subcarrier spacing of 15 kHz. This offset caused by the local oscillator corresponds to 1.40 subcarrier spac-ings. The receiver extracts the information from the received signal to synchronise and compensate for any carrier frequency/phase offset. Increasing demand for data driven applications has put stress on communication systems to provide high data rates and increased bandwidth. This demand has ever been increasing and requires new standards to evolve and efficient hardware. It has been difficult to develop hardware at the pace new communication standards are developing. It also increases the cost of deployment of a technology for a brief period of time without covering the huge capital invested in the network. In order to meet the pace of evolving standards and covering the huge net-work costs, industry needs Software-Defined Radio (SDR). SDR is a radio communica-tion technology that is based on software defined wireless communication protocols instead of hardwired implementations. System components that are usually implemented in hardware are implemented by means of software on a computer or embedded system. LTE carrier recovery algorithm for LTE downlink with 20 MHz system bandwidth has been implemented in this thesis. The architecture chosen for implementation is Transport Triggered Architecture (TTA) with the goal to achieve real time constraints along with a certain flexibility and power consumption needed for an SDR platform. The target programming language is C with TTA specific extensions instead of hand optimized assembly with the aim to reduce the whole design time and still achieve the required optimizations and throughput. This design cycle time is also one of the im-portant aspects for product development in the industry

    Software tools for the rapid development of signal processing and communications systems on configurable platforms

    Get PDF
    Programmers and engineers in the domains of high performance computing (HPC) and electronic system design have a shared goal: to define a structure for coordination and communication between nodes in a highly parallel network of processing tasks. Practitioners in both of these fields have recently encountered additional constraints that motivate the use of multiple types of processing device in a hybrid or heterogeneous platform, but constructing a working "program" to be executed on such an architecture is very time-consuming with current domain-specific design methodologies. In the field of HPC, research has proposed solutions involving the use of alternative computational devices such as FPGAs (field-programmable gate arrays), since these devices can exhibit much greater performance per unit of power consumption. The appeal of integrating these devices into traditional microprocessor-based systems is mitigated, however, by the greater difficulty in constructing a system for the resulting hybrid platform. In the field of electronic system design, a similar problem of integration exists. Many of the highly parallel FPGA-based systems that Xilinx and its customers produce for applications such as telecommunications and video processing require the additional use of one or more microprocessors, but coordinating the interactions between existing FPGA cores and software running on the microprocessors is difficult. The aim of my project is to improve the design flow for hybrid systems by proposing, firstly, an abstract representation of these systems and their components which captures in metadata their different models of computation and communication; secondly, novel design checking, exploration and optimisation techniques based around this metadata; and finally, a novel design methodology in which component and system metadata is used to generate software simulation models. The effectiveness of this approach will be evaluated through the implementation of two physical-layer telecommunications system models that meet the requirements of the 3GPP "LTE" standard, which is commercially relevant to Xilinx and many other organisations

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Implementation of Communication Receivers as Multi-Processor Software

    Get PDF
    Over the years, we have seen changes in the mobile communication systems starting from Advanced Mobile Phone System (AMPS) to 3G Universal Mobile Telecommunications System (UMTS) and now to 4G Long Term Evolution (LTE) advanced. Also the mobile terminals have more features to offer comparatively when it comes to supported applications for example Wireless Local Area Network (WLAN), Global-Positioning System (GPS) and high speed multimedia applications. As the mobile terminals are now evolving towards multistandard systems, the traditional approach of designing radio platforms has now been replaced by more flexible and cost-effective solutions. The challenge imposed by this multistandard approach in the implementation of mobile terminals is to integrate several radio technologies into a single device. Sharing components and processing resources between different radio technologies is the key in the implementation of multistandard terminals. Software implementation of the components is preferred because of shorter lead-time of software development and it also costs less to carry out necessary redesigns with software. In an effort to take up this challenge, the designers proposed Software Defined Radio (SDR) that allows multiple protocols to work on a System-on-Chip (SoC). The SDR implementations can follow either the Multi-Processor System-on-Chip (MPSoC) or the Coarse-Grain Reconfigurable Array (CGRA) paradigm. For this thesis work, a homogeneous MPSoC platform is used to accelerate the signal processing baseband algorithms of WCDMA and OFDM IEEE 802.11a WLAN standards. The performance comparison between single core and multi-core platforms has been made based on the number of clock cycles consumed. The idea is to exploit the inherent parallelism offered by homogeneous MPSoC platform and improve the execution times of computationally intensive algorithms like correlation operation and Fast Fourier Transform (FFT). The baseband signal processing components have been implemented in software and executed on an MPSoC platform to evaluate their performance. The multiprocessor platform has been used in an asymmetric manner in which each processing node has its own copy of application software and uses shared memory space for multiprocessor communication. Each of the processing nodes fetches and executes instructions from its own local instruction memory and is therefore independent from each other. Data Level Parallelism (DLP) has been exploited in the software implementation of the algorithms by performing identical operations simultaneously on different processors

    Performance enhancement for LTE and beyond systems

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyWireless communication systems have undergone fast development in recent years. Based on GSM/EDGE and UMTS/HSPA, the 3rd Generation Partnership Project (3GPP) specified the Long Term Evolution (LTE) standard to cope with rapidly increasing demands, including capacity, coverage, and data rate. To achieve this goal, several key techniques have been adopted by LTE, such as Multiple-Input and Multiple-Output (MIMO), Orthogonal Frequency-Division Multiplexing (OFDM), and heterogeneous network (HetNet). However, there are some inherent drawbacks regarding these techniques. Direct conversion architecture is adopted to provide a simple, low cost transmitter solution. The problem of I/Q imbalance arises due to the imperfection of circuit components; the orthogonality of OFDM is vulnerable to carrier frequency offset (CFO) and sampling frequency offset (SFO). The doubly selective channel can also severely deteriorate the receiver performance. In addition, the deployment of Heterogeneous Network (HetNet), which permits the co-existence of macro and pico cells, incurs inter-cell interference for cell edge users. The impact of these factors then results in significant degradation in relation to system performance. This dissertation aims to investigate the key techniques which can be used to mitigate the above problems. First, I/Q imbalance for the wideband transmitter is studied and a self-IQ-demodulation based compensation scheme for frequencydependent (FD) I/Q imbalance is proposed. This combats the FD I/Q imbalance by using the internal diode of the transmitter and a specially designed test signal without any external calibration instruments or internal low-IF feedback path. The instrument test results show that the proposed scheme can enhance signal quality by 10 dB in terms of image rejection ratio (IRR). In addition to the I/Q imbalance, the system suffers from CFO, SFO and frequency-time selective channel. To mitigate this, a hybrid optimum OFDM receiver with decision feedback equalizer (DFE) to cope with the CFO, SFO and doubly selective channel. The algorithm firstly estimates the CFO and channel frequency response (CFR) in the coarse estimation, with the help of hybrid classical timing and frequency synchronization algorithms. Afterwards, a pilot-aided polynomial interpolation channel estimation, combined with a low complexity DFE scheme, based on minimum mean squared error (MMSE) criteria, is developed to alleviate the impact of the residual SFO, CFO, and Doppler effect. A subspace-based signal-to-noise ratio (SNR) estimation algorithm is proposed to estimate the SNR in the doubly selective channel. This provides prior knowledge for MMSE-DFE and automatic modulation and coding (AMC). Simulation results show that this proposed estimation algorithm significantly improves the system performance. In order to speed up algorithm verification process, an FPGA based co-simulation is developed. Inter-cell interference caused by the co-existence of macro and pico cells has a big impact on system performance. Although an almost blank subframe (ABS) is proposed to mitigate this problem, the residual control signal in the ABS still inevitably causes interference. Hence, a cell-specific reference signal (CRS) interference cancellation algorithm, utilizing the information in the ABS, is proposed. First, the timing and carrier frequency offset of the interference signal is compensated by utilizing the cross-correlation properties of the synchronization signal. Afterwards, the reference signal is generated locally and channel response is estimated by making use of channel statistics. Then, the interference signal is reconstructed based on the previous estimate of the channel, timing and carrier frequency offset. The interference is mitigated by subtracting the estimation of the interference signal and LLR puncturing. The block error rate (BLER) performance of the signal is notably improved by this algorithm, according to the simulation results of different channel scenarios. The proposed techniques provide low cost, low complexity solutions for LTE and beyond systems. The simulation and measurements show good overall system performance can be achieved

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters
    • …
    corecore