2,748 research outputs found

    Linear-Time Algorithms for Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs

    Full text link
    Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a linear-time algorithm to find one in any graph that is not an interval graph. Tucker characterized the minimal forbidden submatrices of binary matrices that do not have the consecutive-ones property. We give a linear-time algorithm to find one in any binary matrix that does not have the consecutive-ones property.Comment: A preliminary version of this work appeared in WG13: 39th International Workshop on Graph-Theoretic Concepts in Computer Scienc

    Edge-Orders

    Get PDF
    Canonical orderings and their relatives such as st-numberings have been used as a key tool in algorithmic graph theory for the last decades. Recently, a unifying concept behind all these orders has been shown: they can be described by a graph decomposition into parts that have a prescribed vertex-connectivity. Despite extensive interest in canonical orderings, no analogue of this unifying concept is known for edge-connectivity. In this paper, we establish such a concept named edge-orders and show how to compute (1,1)-edge-orders of 2-edge-connected graphs as well as (2,1)-edge-orders of 3-edge-connected graphs in linear time, respectively. While the former can be seen as the edge-variants of st-numberings, the latter are the edge-variants of Mondshein sequences and non-separating ear decompositions. The methods that we use for obtaining such edge-orders differ considerably in almost all details from the ones used for their vertex-counterparts, as different graph-theoretic constructions are used in the inductive proof and standard reductions from edge- to vertex-connectivity are bound to fail. As a first application, we consider the famous Edge-Independent Spanning Tree Conjecture, which asserts that every k-edge-connected graph contains k rooted spanning trees that are pairwise edge-independent. We illustrate the impact of the above edge-orders by deducing algorithms that construct 2- and 3-edge independent spanning trees of 2- and 3-edge-connected graphs, the latter of which improves the best known running time from O(n^2) to linear time

    Subclasses of Normal Helly Circular-Arc Graphs

    Full text link
    A Helly circular-arc model M = (C,A) is a circle C together with a Helly family \A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how do these classes of graphs relate with straight and round digraphs.Comment: 39 pages, 13 figures. A previous version of the paper (entitled Proper Helly Circular-Arc Graphs) appeared at WG'0

    A Planarity Test via Construction Sequences

    Full text link
    Optimal linear-time algorithms for testing the planarity of a graph are well-known for over 35 years. However, these algorithms are quite involved and recent publications still try to give simpler linear-time tests. We give a simple reduction from planarity testing to the problem of computing a certain construction of a 3-connected graph. The approach is different from previous planarity tests; as key concept, we maintain a planar embedding that is 3-connected at each point in time. The algorithm runs in linear time and computes a planar embedding if the input graph is planar and a Kuratowski-subdivision otherwise

    Isomorphism of graph classes related to the circular-ones property

    Get PDF
    We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, \Gamma-circular-arc graphs, proper circular-arc graphs and convex-round graphs.Comment: 25 pages, 9 figure

    Dynamic representation of consecutive-ones matrices and interval graphs

    Get PDF
    2015 Spring.Includes bibliographical references.We give an algorithm for updating a consecutive-ones ordering of a consecutive-ones matrix when a row or column is added or deleted. When the addition of the row or column would result in a matrix that does not have the consecutive-ones property, we return a well-known minimal forbidden submatrix for the consecutive-ones property, known as a Tucker submatrix, which serves as a certificate of correctness of the output in this case, in O(n log n) time. The ability to return such a certificate within this time bound is one of the new contributions of this work. Using this result, we obtain an O(n) algorithm for updating an interval model of an interval graph when an edge or vertex is added or deleted. This matches the bounds obtained by a previous dynamic interval-graph recognition algorithm due to Crespelle. We improve on Crespelle's result by producing an easy-to-check certificate, known as a Lekkerkerker-Boland subgraph, when a proposed change to the graph results in a graph that is not an interval graph. Our algorithm takes O(n log n) time to produce this certificate. The ability to return such a certificate within this time bound is the second main contribution of this work

    Using ACL2 to Verify Loop Pipelining in Behavioral Synthesis

    Get PDF
    Behavioral synthesis involves compiling an Electronic System-Level (ESL) design into its Register-Transfer Level (RTL) implementation. Loop pipelining is one of the most critical and complex transformations employed in behavioral synthesis. Certifying the loop pipelining algorithm is challenging because there is a huge semantic gap between the input sequential design and the output pipelined implementation making it infeasible to verify their equivalence with automated sequential equivalence checking techniques. We discuss our ongoing effort using ACL2 to certify loop pipelining transformation. The completion of the proof is work in progress. However, some of the insights developed so far may already be of value to the ACL2 community. In particular, we discuss the key invariant we formalized, which is very different from that used in most pipeline proofs. We discuss the needs for this invariant, its formalization in ACL2, and our envisioned proof using the invariant. We also discuss some trade-offs, challenges, and insights developed in course of the project.Comment: In Proceedings ACL2 2014, arXiv:1406.123
    • …
    corecore