82 research outputs found

    Efficient and Provably-secure Certificateless Strong Designated Verifier Signature Scheme without Pairings

    Get PDF
    Strong designated verifier signature (generally abbreviated to SDVS) allows signers to obtain absolute control over who can verify the signature, while only the designated verifier other than anyone else can verify the validity of a SDVS without being able to transfer the conviction. Certificateless PKC has unique advantages comparing with certificate-based cryptosystems and identity-based PKC, without suffering from key escrow. Motivated by these attractive features, we propose a novel efficient CL-SDVS scheme without bilinear pairings or map-to-point hash operations. The proposed scheme achieves all the required security properties including EUF-CMA, non-transferability, strongness and non-delegatability. We also estimate the computational and communication efficiency. The comparison shows that our scheme outperforms all the previous CL-(S)DVS schemes. Furthermore, the crucial security properties of the CL-SDVS scheme are formally proved based on the intractability of SCDH and ECDL assumptions in random oracle model

    Lightweight certificateless and provably-secure signcryptosystem for the internet of things

    Get PDF
    International audienceIn this paper, we propose an elliptic curve-based signcryption scheme derived from the standardized signature KCDSA (Korean Certificate-based Digital Signature Algorithm) in the context of the Internet of Things. Our solution has several advantages. First, the scheme is provably secure in the random oracle model. Second, it provides the following security properties: outsider/insider confidentiality and unforgeability; non-repudiation and public verifiability, while being efficient in terms of communication and computation costs. Third, the scheme offers the certificateless feature, so certificates are not needed to verify the user's public keys. For illustration, we conducted experimental evaluation based on a sensor Wismote platform and compared the performance of the proposed scheme to concurrent scheme

    Certificateless Signature Scheme Based on Rabin Algorithm and Discrete Logarithm

    Get PDF
    Certificateless signature can effectively immue the key escrow problem in the identity-based signature scheme. But the security of the most certificateless signatures usually depends on only one mathematical hard problem, which makes the signature vulnerable when the underlying hard problem has been broken. In order to strengthen the security, in this paper, a certificateless signature whose security depends on two mathematical hard problems, discrete logarithm and factoring problems, is proposed. Then, the proposed certificateless signature can be proved secure in the random oracle, and only both of the two mathematical hard problems are solved, can the proposed signature be broken. As a consequence, the proposed certificateless signature is more secure than the previous signatures. On the other hand, with the pre-computation of the exponential modular computation, it will save more time in the signature signing phase. And compared with the other schemes of this kind, the proposed scheme is more efficient

    Certificateless Public Auditing Protocol with Constant

    Get PDF
    To provide the integrity of outsourced data in the cloud storage services, many public auditing schemes which allow a user to check the integrity of the outsourced data have been proposed. Since most of the schemes are constructed on Public Key Infrastructure (PKI), they suffer from several concerns like management of certificates. To resolve the problems, certificateless public auditing schemes also have been studied in recent years. In this paper, we propose a certificateless public auditing scheme which has the constant-time verification algorithm. Therefore, our scheme is more efficient than previous certificateless public auditing schemes. To prove the security of our certificateless public auditing scheme, we first define three formal security models and prove the security of our scheme under the three security models

    Black-Box Constructions of Signature Schemes in the Bounded Leakage Setting

    Get PDF
    To simplify the certificate management procedures, Shamir introduced the concept of identity-based cryptography (IBC). However, the key escrow problem is inherent in IBC. To get rid of it, Al-Riyami and Paterson introduced in 2003 the notion of certificateless cryptography (CLC). However, if a cryptosystem is not perfectly implemented, adversaries would be able to obtain part of the system\u27s secret state via side-channel attacks, and thus may break the system. This is not considered in the security model of traditional cryptographic primitives. Leakage-resilient cryptography was then proposed to prevent adversaries from doing so. There are fruitful works on leakage-resilient encryption schemes, while there are not many on signature schemes in the leakage setting. In this work, we review the folklore generic constructions of identity-based signature and certificateless signature, and show that if the underlying primitives are leakage-resilient, so are the resulting identity-based signature scheme and certificateless signature scheme. The leakage rate follows the minimum one of the underlying primitives. We also show some instantiations of these generic constructions

    Breaking and Building of Group Inside Signature

    Get PDF
    Group Inside Signature (GIS) is a signature scheme that allows the signer to designate his signature to be verified by a group of people, so that members other than the designated group cannot verify the signature generated by him. In Broadcast Group Oriented Signature (BGOS), an user from one group can designate his signature to be verified by members of other group. The GIS and BGOS schemes \cite{MaAoHe05}, \cite{CJ09} and \cite{MaHeAo05} which we consider are certificateless schemes. An Adaptable Designated Group Signature (ADGS), is one in which an user can designate his signature to be verified by a selected set of members who are from different groups. The ADGS scheme \cite{MaL06} which we consider here is an identity based scheme. In this paper, we present the cryptanalysis of four schemes that appeared in \cite{MaAoHe05}, \cite{CJ09}, \cite{MaHeAo05} and \cite{MaL06}. We show that, both GIS schemes \cite{MaAoHe05}, \cite{CJ09} and BGOS scheme \cite{MaHeAo05} suffers from Type-I and Type-II vulnerabilities and ADGS \cite{MaL06} is universally forgeable. We also present a new scheme for ADGS (N-ADGS) and proved its security in the random oracle model. The existing model for ADGS did not consider unlinkability which is one of the key properties required for ADGS. We provide security model for unlinkability and also prove our scheme is unlinkable

    Cryptanalysis of Certificateless Signcryption Schemes and an Efficient Construction Without Pairing

    Get PDF
    Certificateless cryptography introduced by Al-Riyami and Paterson eliminates the key escrow problem inherent in identity based cryptosystems. Even though building practical identity based signcryption schemes without bilinear pairing are considered to be almost impossible, it will be interesting to explore possibilities of constructing such systems in other settings like certificateless cryptography. Often for practical systems, bilinear pairings are considered to induce computational overhead. Signcryption is a powerful primitive that offers both confidentiality and authenticity to noteworthy messages. Though some prior attempts were made for designing certificateless signcryption schemes, almost all the known ones have security weaknesses. Specifically, in this paper we demonstrate the security weakness of the schemes in \cite{BF08}, \cite{DRJR08} and \cite{CZ08}. We also present the first provably secure certificateless signcryption scheme without bilinear pairing and prove it in the random oracle model

    On the Security of a Certificateless Strong Designated Verifier Signature Scheme

    Get PDF
    Recently, Chen et al. proposed the first non-delegatable certificateless strong designated verifier signature scheme and claimed that their scheme achieves all security requirements. However, in this paper, we disprove their claim and present a concrete attack which shows that their proposed scheme is forgeable. More precisely, we show that there exist adversaries who are able to forge any signer\u27s signature for any designated verifier on any message of his choice
    • …
    corecore