17,557 research outputs found

    Toward high-content/high-throughput imaging and analysis of embryonic morphogenesis

    Get PDF
    In vivo study of embryonic morphogenesis tremendously benefits from recent advances in live microscopy and computational analyses. Quantitative and automated investigation of morphogenetic processes opens the field to high-content and high-throughput strategies. Following experimental workflow currently developed in cell biology, we identify the key challenges for applying such strategies in developmental biology. We review the recent progress in embryo preparation and manipulation, live imaging, data registration, image segmentation, feature computation, and data mining dedicated to the study of embryonic morphogenesis. We discuss a selection of pioneering studies that tackled the current methodological bottlenecks and illustrated the investigation of morphogenetic processes in vivo using quantitative and automated imaging and analysis of hundreds or thousands of cells simultaneously, paving the way for high-content/high-throughput strategies and systems analysis of embryonic morphogenesis

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    {BiQ} Analyzer {HiMod}: An Interactive Software Tool for High-throughput Locus-specific Analysis of 5-Methylcytosine and its Oxidized Derivatives

    Get PDF
    Recent data suggest important biological roles for oxidative modifications of methylated cytosines, specifically hydroxymethylation, formylation and carboxylation. Several assays are now available for profiling these DNA modifications genome-wide as well as in targeted, locus-specific settings. Here we present BiQ Analyzer HiMod, a user-friendly software tool for sequence alignment, quality control and initial analysis of locus-specific DNA modification data. The software supports four different assay types, and it leads the user from raw sequence reads to DNA modification statistics and publication-quality plots. BiQ Analyzer HiMod combines well-established graphical user interface of its predecessor tool, BiQ Analyzer HT, with new and extended analysis modes. BiQ Analyzer HiMod also includes updates of the analysis workspace, an intuitive interface, a custom vector graphics engine and support of additional input and output data formats. The tool is freely available as a stand-alone installation package from http://biq-analyzer-himod.bioinf.mpi-inf.mpg.de/

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    An end-to-end software solution for the analysis of high-throughput single-cell migration data

    Get PDF
    The systematic study of single-cell migration requires the availability of software for assisting data inspection, quality control and analysis. This is especially important for high-throughput experiments, where multiple biological conditions are tested in parallel. Although the field of cell migration can count on different computational tools for cell segmentation and tracking, downstream data visualization, parameter extraction and statistical analysis are still left to the user and are currently not possible within a single tool. This article presents a completely new module for the open-source, cross-platform CellMissy software for cell migration data management. This module is the first tool to focus specifically on single-cell migration data downstream of image processing. It allows fast comparison across all tested conditions, providing automated data visualization, assisted data filtering and quality control, extraction of various commonly used cell migration parameters, and non-parametric statistical analysis. Importantly, the module enables parameters computation both at the trajectory-and at the step-level. Moreover, this single-cell analysis module is complemented by a new data import module that accommodates multiwell plate data obtained from high-throughput experiments, and is easily extensible through a plugin architecture. In conclusion, the end-to-end software solution presented here tackles a key bioinformatics challenge in the cell migration field, assisting researchers in their highthroughput data processing

    Multiplierz: An Extensible API Based Desktop Environment for Proteomics Data Analysis

    Get PDF
    BACKGROUND. Efficient analysis of results from mass spectrometry-based proteomics experiments requires access to disparate data types, including native mass spectrometry files, output from algorithms that assign peptide sequence to MS/MS spectra, and annotation for proteins and pathways from various database sources. Moreover, proteomics technologies and experimental methods are not yet standardized; hence a high degree of flexibility is necessary for efficient support of high- and low-throughput data analytic tasks. Development of a desktop environment that is sufficiently robust for deployment in data analytic pipelines, and simultaneously supports customization for programmers and non-programmers alike, has proven to be a significant challenge. RESULTS. We describe multiplierz, a flexible and open-source desktop environment for comprehensive proteomics data analysis. We use this framework to expose a prototype version of our recently proposed common API (mzAPI) designed for direct access to proprietary mass spectrometry files. In addition to routine data analytic tasks, multiplierz supports generation of information rich, portable spreadsheet-based reports. Moreover, multiplierz is designed around a "zero infrastructure" philosophy, meaning that it can be deployed by end users with little or no system administration support. Finally, access to multiplierz functionality is provided via high-level Python scripts, resulting in a fully extensible data analytic environment for rapid development of custom algorithms and deployment of high-throughput data pipelines. CONCLUSION. Collectively, mzAPI and multiplierz facilitate a wide range of data analysis tasks, spanning technology development to biological annotation, for mass spectrometry-based proteomics research.Dana-Farber Cancer Institute; National Human Genome Research Institute (P50HG004233); National Science Foundation Integrative Graduate Education and Research Traineeship grant (DGE-0654108
    corecore