667 research outputs found

    NASA space station automation: AI-based technology review. Executive summary

    Get PDF
    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics

    Design Concepts for Automating Maintenance Instructions

    Get PDF
    This research task was performed under the Technology for Readiness and Sustainment (TRS) contract (F33615-99-D-6001) for the Air Force Research Laboratory (AFRL), Sustainment Logistics Branch (HESS) at Wright-Patterson AFB, OH. The period of performance spanned one year starting 29 January 1999. The objective of this task was to develop and demonstrate a framework that can support the automated validation and verification of aircraft maintenance Technical Orders (TOs). The research team examined all stages ofTO generation to determine which tasks most warranted further research. From that investigation, validation and verification of appropriate, safe, and correct procedure steps emerged as the primary research target. This process would be based on available computer-aided design (CAD) data, procedure step ordering from existing sources, and human models. This determination was based on which tasks could yield the greatest impact on the authoring process and offer the greatest potential economic benefits. The team then developed a research roadmap and outlined specific technologies to be addressed in possible subsequent Air Force research tasks. To focus on the potential technology integration of the validation and verification component into existing or future TO generation procedures, we defined a demonstration scenario. Using the Front Uplock Hook assembly from an F/A-18 as the subject, we examined task procedure steps and failures that could be exposed by automated validation tools. These included hazards to personnel, damage to equipment, and incorrect disassembly order. Using the Parameterized Action Representation (PAR) developed on previous projects for actions and equipment behaviors, we characterized procedure steps and their positive and negative consequences. Finally, we illustrated a hypothetical user interface extension to a typical Interactive Electronic Technical Manual (IETM) authoring system to demonstrate how this process might appear to the TO author

    Capturing, classification and concept generation for automated maintenance tasks

    Get PDF
    Maintenance is an efficient and cost effective way to keep the function of the product available during the product lifecycle. Automating maintenance may drive down costs and improve performance time; however capturing the necessary information required to perform certain maintenance tasks and later building automated platforms to undertake them is very difficult. This paper looks at the creation of a novel methodology tasked with firstly the capture and classification of maintenance tasks and finally conceptual design of platforms for automating maintenance

    A Case-Based Reasoning Method for Remanufacturing Process Planning

    Get PDF
    Remanufacturing is a practice of growing importance due to its increasing environmental and economic benefits. Process planning plays a critical role in realizing a successful remanufacturing strategy. This paper presents a case-based reasoning method for remanufacturing process planning, which allows a process planner to rapidly retrieve, reuse, revise, and retain the solutions to past process problems. In the proposed method, influence factors including essential characteristics, failure characteristics, and remanufacturing processing characteristics are identified, and the local similarity of influence factors between the new case and the past cases is determined by nearest neighbor matching method, and then the vector of correction factor for local similarity is utilized in the nearest neighbor algorithm to improve the accuracy and effectiveness of case searching. To assess the usefulness and practicality of the proposed method, an illustrative example is given and the results are discussed

    The use of a complexity model to facilitate in the selection of a fuel cell assembly sequence

    Get PDF
    Various tools and methods exists for arriving at an optimised assembly sequence with most using a soft computing approach. However, these methods have issues including susceptibly to early convergence and high computational time. The typical objectives for these methods are to minimise the number of assembly change directions, orientation changes or the number of tool changes. This research proposes an alternative approach whereby an assembly sequence is measured based on its complexity. The complexity value is generated using design for assembly metrics and coupled with considerations for product performance, component precedence and material handling challenges to arrive at a sequence solution which is likely to be closest to the optimum for cost and product quality. The case presented in this study is of the assembly of a single proton exchange membrane fuel cell. This research demonstrates a practical approach for determining assembly sequence using data and tools that are used and available in the wider industry. Further work includes automating the sequence generation process and extending the work by considering additional factors such as ergonomi

    The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence

    Get PDF
    Various tools and methods exists for arriving at an optimised assembly sequence with most using a soft computing approach. However, these methods have issues including susceptibly to early convergence and high computational time. The typical objectives for these methods are to minimise the number of assembly change directions, orientation changes or the number of tool changes. This research proposes an alternative approach whereby an assembly sequence is measured based on its complexity. The complexity value is generated using design for assembly metrics and coupled with considerations for product performance, component precedence and material handling challenges to arrive at a sequence solution which is likely to be closest to the optimum for cost and product quality. The case presented in this study is of the assembly of a single proton exchange membrane fuel cell. This research demonstrates a practical approach for determining assembly sequence using data and tools that are used and available in the wider industry. Further work includes automating the sequence generation process and extending the work by considering additional factors such as ergonomics

    Ant Colony Optimization in Green Manufacturing

    Get PDF
    • …
    corecore