656,927 research outputs found

    Identification of Nonlinear Parameter-Dependent Common-Structured models to accommodate varying experimental conditions and design parameter properties

    Get PDF
    This study considers the identification problem for a class of nonlinear parameter-varying systems associated with the following scenario: the system behaviour depends on some specifically prescribed parameter properties, which are adjustable. To understand the effect of the varying parameters, several different experiments, corresponding to different parameter properties, are carried out and different data sets are collected. The objective is to find, from the available data sets, a common parameter-dependent model structure that best fits the adjustable parameter properties for the underlying system. An efficient common model structure selection (CMSS) algorithm, called the extended forward orthogonal regression (EFOR) algorithm, is proposed to select such a common model structure. Several examples are presented to illustrate the application and the effectiveness of the new identification approach

    Dynamics of a split torque helicopter transmission

    Get PDF
    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system

    Identification of time-varying systems using multiresolution wavelet models

    Get PDF
    Identification of linear and nonlinear time-varying systems is investigated and a new wavelet model identification algorithm is introduced. By expanding each time-varying coefficient using a multiresolution wavelet expansion, the time-varying problem is reduced to a time invariant problem and the identification reduces to regressor selection and parameter estimation. Several examples are included to illustrate the application of the new algorithm

    Constructing an overall dynamical model for a system with changing design parameter properties

    No full text
    This study considers the identification problem for a class of non-linear parameter-varying systems associated with the following scenario: the system behaviour depends on some specifically prescribed parameter properties, which are adjustable. To understand the effect of the varying parameters, several different experiments, corresponding to different parameter properties, are carried out and different data sets are collected. The objective is to find, from the available data sets, a common parameter-dependent model structure that best fits the adjustable parameter properties for the underlying system. An efficient Common Model Structure Selection (CMSS) algorithm, called the Extended Forward Orthogonal Regression (EFOR) algorithm, is proposed to select such a common model structure. Two examples are presented to illustrate the application and the effectiveness of the new identification approach
    corecore