14,932 research outputs found

    Card-Based Remittances: A Closer Look at Supply and Demand

    Get PDF
    Analyzes the supply and demand for card-based transfers among Latin American and Caribbean immigrants sending remittances. Outlines card features and fee structures, and examines usage by country of origin, legal status, location, and card type

    Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF

    Get PDF
    The AC impedance response of mixed ionic and electronic conductors (MIECs) exposed to a chemical potential gradient is derived from first principles. In such a system, the chemical potential gradient induces a gradient in the carrier concentration. For the particular system considered, 15% samarium doped ceria (SDC15) with Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2O3-) (BSCF) and Pt electrodes, the oxygen vacancy concentration is a constant under the experimental conditions and it is the electron concentration that varies. The resulting equations are mapped to an equivalent circuit that bears some resemblance to recently discussed equivalent circuit models for MIECs under uniform chemical potential conditions, but differs in that active elements, specifically, voltage-controlled current sources, occur. It is shown that from a combination of open circuit voltage measurements and AC impedance spectroscopy, it is possible to use this model to determine the oxygen partial pressure drop that occurs between the gas phase in the electrode chambers and the electrode|electrolyte interface, as well as the interfacial polarization resistance. As discussed in detail, this resistance corresponds to the slope of the interfacial polarization curve. Measurements were carried out at temperatures between 550 and 650 °C and oxygen partial pressure at the Pt anode ranging from 10^(-29) to 10^(-24) atm (attained using H_2/H_2O/Ar mixtures), while the cathode was exposed to either synthetic air or neat oxygen. The oxygen partial pressure drop at the anode was typically about five orders of magnitude, whereas that at the cathode was about 0.1 atm for measurements using air. Accordingly, the poor activity of the anode is responsible for a loss in open circuit voltage of about 0.22 V, whereas the cathode is responsible for only about 0.01 V, reflecting the high activity of BSCF for oxygen electro-reduction. The interfacial polarization resistance at the anode displayed dependences on oxygen partial pressure and on temperature that mimic those of the electronic resistivity of SDC15. This behavior is consistent with hydrogen electro-oxidation occurring directly on the ceria surface and electron migration being the rate-limiting step. However, the equivalent resistance implied by the oxygen partial pressure drop across the anode displayed slightly different behavior, possibly indicative of a more complex reaction pathway

    Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films.

    Get PDF
    Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∌1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material

    Flow Field Evolution of a Decaying Sunspot

    Full text link
    We study the evolution of the flows and horizontal proper motions in and around a decaying follower sunspot based on time sequences of two-dimensional spectroscopic observations in the visible and white light imaging data obtained over six days from June~7 to~12, 2005. During this time period the sunspot decayed gradually to a pore. The spectroscopic observations were obtained with the Fabry-P\'{e}rot based Visible-Light Imaging Magnetograph (VIM) in conjunction with the high-order adaptive optics (AO) system operated at the 65 cm vacuum reflector of the Big Bear Solar Observatory (BBSO). We apply local correlation tracking (LCT) to the speckle reconstructed time sequences of white-light images around 600 nm to infer horizontal proper motions while the Doppler shifts of the scanned \FeI line at 630.15 nm are used to calculate line-of-sight (LOS) velocities with sub-arcsecond resolution. We find that the dividing line between radial inward and outward proper motions in the inner and outer penumbra, respectively, survives the decay phase. In particular the moat flow is still detectable after the penumbra disappeared. Based on our observations three major processes removed flux from the sunspot: (a) fragmentation of the umbra, (b) flux cancelation of moving magnetic features (MMFs; of the same polarity as the sunspot) that encounter the leading opposite polarity network and plages areas, and (c) flux transport by MMFs (of the same polarity as the sunspot) to the surrounding network and plage regions that have the same polarity as the sunspot.Comment: 9 pages, 7 figures, The Astrophysical Journal, accepted September, 200

    The Impacts of International Migration on Remaining Household Members: Omnibus Results from a Migration Lottery Program

    Get PDF
    The impacts of international migration on development in the sending countries, and especially the effects on remaining household members, are increasingly studied. However, comparisons of households in developing countries with and without migrants are complicated by a double-selectivity problem: households self-select into migration, and among households involved in migration, some send a subset of members with the rest remaining whilst other households migrate en masse. We address these selectivity issues using the randomization provided by an immigration ballot under the Pacific Access Category (PAC) of New Zealand's immigration policy. We survey applicants to the 2002-05 PAC ballots in Tonga and compare outcomes for the remaining household members of emigrants with those for members of similar households who were unsuccessful in the ballots. The immigration laws determine which household members can accompany the principal migrant, providing an instrument to address the second selectivity issue. Using this natural experiment we examine the myriad impacts that migration has on remaining household members, focussing on labor supply, income, durable assets, financial service usage, diet and physical and mental health and use multiple hypothesis testing procedures to examine which impacts are robust. We find the overall impact on households left behind to be largely negative. We also find evidence that both sources of selectivity matter, leading studies which fail to adequately address them to misrepresent the impact of migration.wellbeing, selectivity, natural experiment, emigration, remittances

    Prospects for SIMPLE 2000: A large-mass, low-background Superheated Droplet Detector for WIMP searches

    Get PDF
    SIMPLE 2000 (Superheated Instrument for Massive ParticLE searches) will consist of an array of eight to sixteen large active mass (∌15\sim15 g) Superheated Droplet Detectors(SDDs) to be installed in the new underground laboratory of Rustrel-Pays d'Apt. Several factors make of SDDs an attractive approach for the detection of Weakly Interacting Massive Particles (WIMPs), namely their intrinsic insensitivity to minimum ionizing particles, high fluorine content, low cost and operation near ambient pressure and temperature. We comment here on the fabrication, calibration and already-competitive first limits from SIMPLE prototype SDDs, as well as on the expected immediate increase in sensitivity of the program, which aims at an exposure of >>25 kg-day during the year 2000. The ability of modest-mass fluorine-rich detectors to explore regions of neutralino parameter space beyond the reach of the most ambitious cryogenic projects is pointed out.Comment: 19 pages, 10 figures included. New Journal of Physics, in pres

    ISDN at NASA Lewis Research Center

    Get PDF
    An expository investigation of the potential impact of the Integrated Services Digital Network (ISDN) at NASA Lewis Research Center is described. To properly frame the subject, the paper contains a detailed survey of the components of Narrowband ISDN. The principles and objectives are presented as decreed by the Consultative Committee for International Telephone and Telegraph (CCITT). The various channel types are delineated and their associated service combinations are described. The subscriber-access network functions are explained pictorially via the ISDN reference configuration. A section on switching techniques is presented to enable the reader to understand the emergence of the concept of fast packet switching. This new technology is designed to operate over the high bandwidth, low error rate transmission media that characterizes the LeRC environment. A brief introduction to the next generation of networks is covered with sections on Broadband ISDM (B-ISDN), Asynchronous Transfer Mode (ATM), and Synchronous Optical Networks (SONET). Applications at LeRC are presented, first in terms of targets of opportunity, then in light of compatibility constraints. In-place pilot projects and testing are described that demonstrate actual usage at LeRC
    • 

    corecore