266 research outputs found

    Improving software maintainability:a case study

    Get PDF

    Model-driven generative programming for BIS mobile applications

    Get PDF
    The burst on the availability of smart phones based on the Android platform calls for cost-effective techniques to generate mobile apps for general purpose, distributed business information systems (BIS). To mitigate this problem our research aims at applying model-driven techniques to automatically generate usable prototypes with a sound, maintainable, architecture. Following three base principles: model-based generation, separation of concerns, paradigm seamlessness, we try to answer the main guiding question – how to reduce development time and cost by transforming a given domain model into an Android application? To answer this question we propose to develop an application that follows a generative approach for mobile BIS apps that will mitigate the identified problems. Its input is a platform independent model (PIM), with business rules specified in OCL (Object Constraint Language). We adopted the Design Science Research methodology, that helps gaining problem understanding, identifying systemically appropriate solutions, and in effectively evaluating new and innovative solutions. To better evaluate our solution, besides resorting to third party tools to test specific components integration, we demonstrated its usage and evaluated how well it mitigates a subset of the identified problems in an observational study (we presented our generated apps to an outside audience in a controlled environment to study our model-based centered and, general apps understandability) and communicated its effectiveness to researchers and practitioners.O grande surto de disponibilidade de dispositivos móveis para a plataforma Android requer, técnicas generativas de desenvolvimento de aplicações para sistemas comuns e/ou distribuídos de informação empresariais/negócio, que otimizem a relação custo-benefício. Para mitigar este problema, esta investigação visa aplicar técnicas orientadas a modelos para, automaticamente, gerar protótipos funcionais de aplicações com uma arquitetura robusta e fácil de manter. Seguindo para tal três princípios base: geração baseada no modelo, separação de aspetos, desenvolvimento sem soturas (sem mudança de paradigma), tentamos dar resposta à pergunta orientadora – como reduzir o tempo e custo de desenvolvimento de uma aplicação Android por transformação de um dado modelo de domínio? De modo a responder a esta questão nós propomos desenvolver uma aplicação que segue uma abordagem generativa para aplicações de informação empresariais/negócio móveis de modo a mitigar os problemas identificados. Esta recebe modelos independentes de plataforma (PIM), com regras de negócio especificadas em OCL (Object Constraint Language). Seguimos a metodologia Design Science Research que ajuda a identificar e perceber o problema, a identificar sistematicamente soluções apropriadas aos problemas e a avaliar mais eficientemente soluções novas e inovadoras. Para melhor avaliar a nossa solução, apesar de recorrermos a ferramentas de terceiros para testar a integração de componentes específicos, também demonstramos a sua utilização, através de estudos experimentais (em um ambiente controlado, apresentamos as nossas aplicações geradas a uma audiência externa que nos permitiu estudar a compreensibilidade baseada e centrada em modelos e, de um modo geral, das aplicações) avaliamos o quanto esta mitiga um subconjunto de problemas identificados e comunicamos a sua eficácia para investigadores e profissionais

    Quantitative evaluation of Pandora Temporal Fault Trees via Petri Nets

    Get PDF
    © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Using classical combinatorial fault trees, analysts are able to assess the effects of combinations of failures on system behaviour but are unable to capture sequence dependent dynamic behaviour. Pandora introduces temporal gates and temporal laws to fault trees to allow sequence-dependent dynamic analysis of events. Pandora can be easily integrated in model-based design and analysis techniques; however, the combinatorial quantification techniques used to solve classical fault trees cannot be applied to temporal fault trees. Temporal fault trees capture state and therefore require a state space solution for quantification of probability. In this paper, we identify Petri Nets as a possible framework for quantifying temporal trees. We describe how Pandora fault trees can be mapped to Petri Nets for dynamic dependability analysis and demonstrate the process on a fault tolerant fuel distribution system model

    Detection of microservice smells through static analysis

    Get PDF
    A arquitetura de microsserviços é um modelo arquitetural promissor na área de software, atraindo desenvolvedores e empresas para os seus princípios convincentes. As suas vantagens residem no potencial para melhorar a escalabilidade, a flexibilidade e a agilidade, alinhando se com as exigências em constante evolução da era digital. No entanto, navegar entre as complexidades dos microsserviços pode ser uma tarefa desafiante, especialmente à medida que este campo continua a evoluir. Um dos principais desafios advém da complexidade inerente aos microsserviços, em que o seu grande número e interdependências podem introduzir novas camadas de complexidade. Além disso, a rápida expansão dos microsserviços, juntamente com a necessidade de aproveitar as suas vantagens de forma eficaz, exige uma compreensão mais profunda das potenciais ameaças e problemas que podem surgir. Para tirar verdadeiramente partido das vantagens dos microsserviços, é essencial enfrentar estes desafios e garantir que o desenvolvimento e a adoção de microsserviços sejam bem-sucedidos. O presente documento pretende explorar a área dos smells da arquitetura de microsserviços que desempenham um papel tão importante na dívida técnica dirigida à área dos microsserviços. Embarca numa exploração de investigação abrangente, explorando o domínio dos smells de microsserviços. Esta investigação serve como base para melhorar um catálogo de smells de microsserviços. Esta investigação abrangente obtém dados de duas fontes primárias: systematic mapping study e um questionário a profissionais da área. Este último envolveu 31 profissionais experientes com uma experiência substancial no domínio dos microsserviços. Além disso, são descritos o desenvolvimento e o aperfeiçoamento de uma ferramenta especificamente concebida para identificar e resolver problemas relacionados com os microsserviços. Esta ferramenta destina-se a melhorar o desempenho dos programadores durante o desenvolvimento e a implementação da arquitetura de microsserviços. Por último, o documento inclui uma avaliação do desempenho da ferramenta. Trata-se de uma análise comparativa efetuada antes e depois das melhorias introduzidas na ferramenta. A eficácia da ferramenta será avaliada utilizando o mesmo benchmarking de microsserviços utilizado anteriormente, para além de outro benchmarking para garantir uma avaliação abrangente.The microservices architecture stands as a beacon of promise in the software landscape, drawing developers and companies towards its compelling principles. Its appeal lies in the potential for improved scalability, flexibility, and agility, aligning with the ever-evolving demands of the digital age. However, navigating the intricacies of microservices can be a challenging task, especially as this field continues to evolve. A key challenge arises from the inherent complexity of microservices, where their sheer number and interdependencies can introduce new layers of intricacy. Furthermore, the rapid expansion of microservices, coupled with the need to harness their advantages effectively, demands a deeper understanding of the potential pitfalls and issues that may emerge. To truly unlock the benefits of microservices, it is essential to address these challenges head-on and ensure a successful journey in the world of microservices development and adoption. The present document intends to explore the area of microservice architecture smells that play such an important role in the technical debt directed to the area of microservices. It embarks on a comprehensive research exploration, delving into the realm of microservice smells. This research serves as the cornerstone for enhancing a microservice smell catalogue. This comprehensive research draws data from two primary sources: a systematic mapping research and an industry survey. The latter involves 31 seasoned professionals with substantial experience in the field of microservices. Moreover, the development and enhancement of a tool specifically designed to identify and address issues related to microservices is described. This tool is aimed at improving developers' performance throughout the development and implementation of microservices architecture. Finally, the document includes an evaluation of the tool's performance. This involves a comparative analysis conducted before and after the tool's enhancements. The tool's effectiveness will be assessed using the same microservice benchmarking as previously employed, in addition to another benchmark to ensure a comprehensive evaluation

    IDENTIFICATION AND QUANTIFICATION OF VARIABILITY MEASURES AFFECTING CODE REUSABILITY IN OPEN SOURCE ENVIRONMENT

    Get PDF
    Open source software (OSS) is one of the emerging areas in software engineering, and is gaining the interest of the software development community. OSS was started as a movement, and for many years software developers contributed to it as their hobby (non commercial purpose). Now, OSS components are being reused in CBSD (commercial purpose). However, recently, the use of OSS in SPL is envisioned recently by software engineering researchers, thus bringing it into a new arena. Being an emerging research area, it demands exploratory study to explore the dimensions of this phenomenon. Furthermore, there is a need to assess the reusability of OSS which is the focal point of these disciplines (CBSE, SPL, and OSS). In this research, a mixed method based approach is employed which is specifically 'partially mixed sequential dominant study'. It involves both qualitative (interviews) and quantitative phases (survey and experiment). During the qualitative phase seven respondents were involved, sample size of survey was 396, and three experiments were conducted. The main contribution of this study is results of exploration of the phenomenon 'reuse of OSS in reuse intensive software development'. The findings include 7 categories and 39 dimensions. One of the dimension factors affecting reusability was carried to the quantitative phase (survey and experiment). On basis of the findings, proposal for reusability attribute model was presented at class and package level. Variability is one of the newly identified attribute of reusability. A comprehensive theoretical analysis of variability implementation mechanisms is conducted to propose metrics for its assessment. The reusability attribute model is validated by statistical analysis of I 03 classes and 77 packages. An evolutionary reusability analysis of two open source software was conducted, where different versions of software are analyzed for their reusability. The results show a positive correlation between variability and reusability at package level and validate the other identified attributes. The results would be helpful to conduct further studies in this area

    iObserve: Integrated Observation and Modeling Techniques to Support Adaptation and Evolution of Software Systems

    Get PDF
    The goal of iObserve is to develop methods and tools to support evolution and adaptation of long-lived software systems. Future long-living software systems will be engineered using third-party software services and infrastructures. Key challenges for such systems will be caused by dynamic changes of deployment options on cloud platforms. Third-party services and infrastructures are neither owned nor controlled by the users and developers of service-based systems. System users and developers are thus only able to observe third-party services and infrastructures via their interface, but are not able to look into the software and infrastructure that provides those services. In this technical report, we summarize our results of four activities to realize a complete tooling around Kieker, Palladio, and MAMBA, supporting performance and cost prediction, and the evaluation of data privacy in context of geo-locations. Furthermore, the report illustrates our efforts to extend Palladio

    Model Driven Development and Maintenance of Business Logic for Information Systems

    Get PDF
    Since information systems become more and more important in today\''s society, business firms, organizations, and individuals rely on these systems to manage their daily business and social activities. The dependency of possibly critical business processes on complex IT systems requires a strategy that supports IT departments in reducing the time needed to implement changed or new domain requirements of functional departments. In this context, software models help to manage system\''s complexity and provide a tool for communication and documentation purposes. Moreover, software engineers tend to use automated software model processing such as code generation to improve development and maintenance processes. Particularly in the context of web-based information systems, a number of model driven approaches were developed. However, we believe that compared to the user interface layer and the persistency layer, there could be a better support of consistent approaches providing a suitable architecture for the consistent model driven development of business logic. To ameliorate this situation, we developed an architectural blueprint consisting of meta models, tools, and a method support for model driven development and maintenance of business logic from analysis until system maintenance. This blueprint, which we call Amabulo infrastructure, consists of five layers and provides concepts and tools to set up and apply concrete infrastructures for model driven development projects. Modeling languages can be applied as needed. In this thesis we focus on business logic layers of J2EE applications. However, concrete code generation rules can be adapted easily for different target platforms. After providing a high-level overview of our Amabulo infrastructure, we describe its layers in detail: The Visual Model Layer is responsible for all visual modeling tasks. For this purpose, we discuss requirements for visual software models for business logic, analyze several visual modeling languages concerning their usefulness, and provide an UML profile for business logic models. The Abstract Model Layer provides an abstract view on the business logic model in the form of a domain specific model, which we call Amabulo model. An Amabulo model is reduced to pure logical information concerning business logic aspects. It focuses on information that is relevant for the code generation. For this purpose, an Amabulo model integrates model elements for process modeling, state modeling, and structural modeling. It is used as a common interface between visual modeling languages and code generators. Visual models of the Visual Model Layer are automatically transformed into an Amabulo model. The Abstract System Layer provides a formal view onto the system in the form of a Coloured Petri Net (CPN). A Coloured Petri Net representation of the modeled business logic is a formal structure and independent of the actual business logic implementation. After an Amabulo model is automatically transformed into a CPN, it can be analyzed and simulated before any line of code is generated. The Code Generation Layer is responsible for code generation. To support the design and implementation of project-specific code generators, we discuss several aspects of code integration issues and provide object-oriented design approaches to tackle the issues. Then, we provide a conceptual mapping of Amabulo model elements into architectural elements of a J2EE infrastructure. This mapping explicitly considers robustness features, which support a later manual integration of generated critical code artifacts and external systems. The Application Layer is the target layer of an Amabulo infrastructure and comprises generated code artifacts. These artifacts are instances of a specific target platform specification, and they can be modified for integration purposes with development tools. Through the contributions in this thesis, we aim to provide an integrated set of solutions to support an efficient model driven development and maintenance process for the business logic of information systems. Therefore, we provide a consistent infrastructure blueprint that considers modeling tasks, model analysis tasks, and code generation tasks. As a result, we see potential for reducing the development and maintenance efforts for changed domain requirements and simultaneously guaranteeing robustness and maintainability even after several changes

    Self-Organizing Software Architectures

    Get PDF
    Looking at engineering productivity is a source for improving the state of software engineering. We present two approaches to improve productivity: bottom-up modeling and self-configuring software components. Productivity, as measured in the ability to produce correctly working software features using limited resources is improved by performing less wasteful activities and by concentrating on the required activities to build sustainable software development organizations. Bottom-up modeling is a way to combine improved productivity with agile software engineering. Instead of focusing on tools and up-front planning, the models used emerge, as the requirements to the product are unveiled during a project. The idea is to build the modeling formalisms strong enough to be employed in code generation and as runtime models. This brings the benefits of model-driven engineering to agile projects, where the benefits have been rare. Self-configuring components are a development of bottom-up modeling. The notion of a source model is extended to incorporate the software entities themselves. Using computational reflection and introspection, dependent components of the software can be automatically updated to reflect changes in the dependence. This improves maintainability, thus making software changes faster. The thesis contains a number of case studies explaining the ways of applying the presented techniques. In addition to constructing the case studies, an empirical validation with test subjects is presented to show the usefulness of the techniques.Itseorganisoituvat ohjelmistoarkkitehtuurit Ohjelmistokehityksen tuottavuus on monen ohjelmistokehitysorganisaation huolenaihe. Erityisesti ylläpitovaiheessa ohjelmistojen heikko muokattavuus tuottaa turhia kustannuksia ja pettymyksiä asiakassuhteissa, kun vaikeasti muokattavaan ohjelmistoon tulisi tehdä muutoksia. Tässä työssä esitetään kaksi menetelmää ohjelmistojen muokattavuuden parantamiseksi: kokoava mallinnuskielten käyttäminen sekä itseorganisoituvat ohjelmistokomponentit. Mallipohjaisessa ohjelmistotuotannossa ohjelmistoille kehitetään soveltuvat mallinnuskielet ja -työkalut, joiden pohjalta kehitettävä ohjelmisto voidaan automaattisesti tuottaa. Uuden mallinnuskielen kehittäminen ja sitä tukevan välineistön rakentaminen on kuitenkin aikaaviepää ja vaikeaa. Vaarana on, että kehitetty kieli on valmistuessaan vanhentunut. Niin kutsutuissa ketterissä ohjelmistomenetelmissä yritetään välttää perinteisten, suunittelupainotteisten kehitysmenetelmien tuottamia sudenkuoppia. Liiallinen ketteryys voi kuitenkin kostautua heikkona tuottavuutena, kun kehitysväen kaikki aika kuluu näppäryysharjoituksiin varsinaisen tuottavan työn sijaan. Kokoava mallipohjainen tuotanto keskittyy kehittämään vain riittävän hyviä malleja, joiden perusteella voidaan yhdistää mallipohjaisen ohjelmistotuotannon ja ketterien prosessimallien tuomat edut. Ulkoisten, erikseen kehiteltyjen mallikielten lisäksi työssä esitellään ajatus ohjelmakoodin itsensä käyttämisestä mallipohjaisen ohjelmistotuotannon työkaluna. Näin syntyy itseorganisoituva ohjelmistoarkkitehtuuri. Tällä tavoin kehitystyön tuottavuus paranee, sillä ohjelmakoodin sisäisten riippuvuuksien määrä laskee, ja näin ollen muokkausten tekeminen on helpompaa. Työssä esitellään tapaustutkimuksia ohjelmakoodiin perustuvasta mallipohjaisen ohjelmistotuotannon ohjelmistokehyksistä sekä empiirinen validointi itseorganisoituvuuden hyödyllisyydestä tuottavuusnäkökulmasta katsoen
    corecore