1,287 research outputs found

    SPIDER: Fault Resilient SDN Pipeline with Recovery Delay Guarantees

    Full text link
    When dealing with node or link failures in Software Defined Networking (SDN), the network capability to establish an alternative path depends on controller reachability and on the round trip times (RTTs) between controller and involved switches. Moreover, current SDN data plane abstractions for failure detection (e.g. OpenFlow "Fast-failover") do not allow programmers to tweak switches' detection mechanism, thus leaving SDN operators still relying on proprietary management interfaces (when available) to achieve guaranteed detection and recovery delays. We propose SPIDER, an OpenFlow-like pipeline design that provides i) a detection mechanism based on switches' periodic link probing and ii) fast reroute of traffic flows even in case of distant failures, regardless of controller availability. SPIDER can be implemented using stateful data plane abstractions such as OpenState or Open vSwitch, and it offers guaranteed short (i.e. ms) failure detection and recovery delays, with a configurable trade off between overhead and failover responsiveness. We present here the SPIDER pipeline design, behavioral model, and analysis on flow tables' memory impact. We also implemented and experimentally validated SPIDER using OpenState (an OpenFlow 1.3 extension for stateful packet processing), showing numerical results on its performance in terms of recovery latency and packet losses.Comment: 8 page

    Traffic Management Applications for Stateful SDN Data Plane

    Get PDF
    The successful OpenFlow approach to Software Defined Networking (SDN) allows network programmability through a central controller able to orchestrate a set of dumb switches. However, the simple match/action abstraction of OpenFlow switches constrains the evolution of the forwarding rules to be fully managed by the controller. This can be particularly limiting for a number of applications that are affected by the delay of the slow control path, like traffic management applications. Some recent proposals are pushing toward an evolution of the OpenFlow abstraction to enable the evolution of forwarding policies directly in the data plane based on state machines and local events. In this paper, we present two traffic management applications that exploit a stateful data plane and their prototype implementation based on OpenState, an OpenFlow evolution that we recently proposed.Comment: 6 pages, 9 figure

    Relaxing state-access constraints in stateful programmable data planes

    Get PDF
    Supporting the programming of stateful packet forwarding functions in hardware has recently attracted the interest of the research community. When designing such switching chips, the challenge is to guarantee the ability to program functions that can read and modify data plane's state, while keeping line rate performance and state consistency. Current state-of-the-art designs are based on a very conservative all-or-nothing model: programmability is limited only to those functions that are guaranteed to sustain line rate, with any traffic workload. In effect, this limits the maximum time to execute state update operations. In this paper, we explore possible options to relax these constraints by using simulations on real traffic traces. We then propose a model in which functions can be executed in a larger but bounded time, while preventing data hazards with memory locking. We present results showing that such flexibility can be supported with little or no throughput degradation.Comment: 6 page

    SNAP: Stateful Network-Wide Abstractions for Packet Processing

    Full text link
    Early programming languages for software-defined networking (SDN) were built on top of the simple match-action paradigm offered by OpenFlow 1.0. However, emerging hardware and software switches offer much more sophisticated support for persistent state in the data plane, without involving a central controller. Nevertheless, managing stateful, distributed systems efficiently and correctly is known to be one of the most challenging programming problems. To simplify this new SDN problem, we introduce SNAP. SNAP offers a simpler "centralized" stateful programming model, by allowing programmers to develop programs on top of one big switch rather than many. These programs may contain reads and writes to global, persistent arrays, and as a result, programmers can implement a broad range of applications, from stateful firewalls to fine-grained traffic monitoring. The SNAP compiler relieves programmers of having to worry about how to distribute, place, and optimize access to these stateful arrays by doing it all for them. More specifically, the compiler discovers read/write dependencies between arrays and translates one-big-switch programs into an efficient internal representation based on a novel variant of binary decision diagrams. This internal representation is used to construct a mixed-integer linear program, which jointly optimizes the placement of state and the routing of traffic across the underlying physical topology. We have implemented a prototype compiler and applied it to about 20 SNAP programs over various topologies to demonstrate our techniques' scalability

    P4CEP: Towards In-Network Complex Event Processing

    Full text link
    In-network computing using programmable networking hardware is a strong trend in networking that promises to reduce latency and consumption of server resources through offloading to network elements (programmable switches and smart NICs). In particular, the data plane programming language P4 together with powerful P4 networking hardware has spawned projects offloading services into the network, e.g., consensus services or caching services. In this paper, we present a novel case for in-network computing, namely, Complex Event Processing (CEP). CEP processes streams of basic events, e.g., stemming from networked sensors, into meaningful complex events. Traditionally, CEP processing has been performed on servers or overlay networks. However, we argue in this paper that CEP is a good candidate for in-network computing along the communication path avoiding detouring streams to distant servers to minimize communication latency while also exploiting processing capabilities of novel networking hardware. We show that it is feasible to express CEP operations in P4 and also present a tool to compile CEP operations, formulated in our P4CEP rule specification language, to P4 code. Moreover, we identify challenges and problems that we have encountered to show future research directions for implementing full-fledged in-network CEP systems.Comment: 6 pages. Author's versio
    corecore