1,041 research outputs found

    Quantum simulation of bosonic-fermionic non-interacting particles in disordered systems via quantum walk

    Get PDF
    We report on the theoretical analysis of bosonic and fermionic non-interacting systems in a discrete two-particle quantum walk affected by different kinds of disorder. We considered up to 100-step QWs with a spatial, temporal and space-temporal disorder observing how the randomness and the wavefunction symmetry non-trivially affect the final spatial probability distribution, the transport properties and the Shannon entropy of the walkers.Comment: 13 pages, 10 figures. arXiv admin note: text overlap with arXiv:1101.2638 by other author

    Single Photon Manipulation

    Get PDF
    This short book aims to present basic information about single photons in a quick read but with not many details. For this purpose, it only introduces the basic concept of single photons, the most important method of generating single photons in experiments, and a specific emerging field

    Photonic Entanglement for Fundamental Tests and Quantum Communication

    Full text link
    Entanglement is at the heart of fundamental tests of quantum mechanics like tests of Bell-inequalities and, as discovered lately, of quantum computation and communication. Their technological advance made entangled photons play an outstanding role in entanglement physics. We give a generalized concept of qubit entanglement and review the state of the art of photonic experiments.Comment: 54 pages, 33 figures. Review article submitted to QIC (Rinton

    Steering line waves at a dual metasurface for optical applications

    Full text link
    Line waves are defined as confined edge modes propagating at the interface of dual electromagnetic metasurfaces that preserve mirror reflection symmetries. Previous works have theoretically and practically explored these waves, showing that they occur at microwave regimes and terahertz ranges. It is also demonstrated that line waves can happen when there is a symmetric resistance discontinuity from negative to positive values and a uniform surface reactance. Line waves are of tunable mode confinement, direction-dependent polarizations, and singular field enhancement. This study presents a graphene patch design and demonstrates that the line waves associated with this structure can travel in the optical domain. Our design consists of a graphene metasurface on an epsilon near zero (ENZ) substrate. While our approach considers both dual reactive impedances and homogenous reactive ones, we only concentrate on line wave utilization in a dual-impedance structure
    corecore