327 research outputs found

    Lagrangian-based methods for single and multi-layer multicommodity capacitated network design

    Full text link
    Le problème de conception de réseau avec coûts fixes et capacités (MCFND) et le problème de conception de réseau multicouches (MLND) sont parmi les problèmes de conception de réseau les plus importants. Dans le problème MCFND monocouche, plusieurs produits doivent être acheminés entre des paires origine-destination différentes d’un réseau potentiel donné. Des liaisons doivent être ouvertes pour acheminer les produits, chaque liaison ayant une capacité donnée. Le problème est de trouver la conception du réseau à coût minimum de sorte que les demandes soient satisfaites et que les capacités soient respectées. Dans le problème MLND, il existe plusieurs réseaux potentiels, chacun correspondant à une couche donnée. Dans chaque couche, les demandes pour un ensemble de produits doivent être satisfaites. Pour ouvrir un lien dans une couche particulière, une chaîne de liens de support dans une autre couche doit être ouverte. Nous abordons le problème de conception de réseau multiproduits multicouches à flot unique avec coûts fixes et capacités (MSMCFND), où les produits doivent être acheminés uniquement dans l’une des couches. Les algorithmes basés sur la relaxation lagrangienne sont l’une des méthodes de résolution les plus efficaces pour résoudre les problèmes de conception de réseau. Nous présentons de nouvelles relaxations à base de noeuds, où le sous-problème résultant se décompose par noeud. Nous montrons que la décomposition lagrangienne améliore significativement les limites des relaxations traditionnelles. Les problèmes de conception du réseau ont été étudiés dans la littérature. Cependant, ces dernières années, des applications intéressantes des problèmes MLND sont apparues, qui ne sont pas couvertes dans ces études. Nous présentons un examen des problèmes de MLND et proposons une formulation générale pour le MLND. Nous proposons également une formulation générale et une méthodologie de relaxation lagrangienne efficace pour le problème MMCFND. La méthode est compétitive avec un logiciel commercial de programmation en nombres entiers, et donne généralement de meilleurs résultats.The multicommodity capacitated fixed-charge network design problem (MCFND) and the multilayer network design problem (MLND) are among the most important network design problems. In the single-layer MCFND problem, several commodities have to be routed between different origin-destination pairs of a given potential network. Appropriate capacitated links have to be opened to route the commodities. The problem is to find the minimum cost design and routing such that the demands are satisfied and the capacities are respected. In the MLND, there are several potential networks, each at a given layer. In each network, the flow requirements for a set of commodities must be satisfied. However, the selection of the links is interdependent. To open a link in a particular layer, a chain of supporting links in another layer has to be opened. We address the multilayer single flow-type multicommodity capacitated fixed-charge network design problem (MSMCFND), where commodities are routed only in one of the layers. Lagrangian-based algorithms are one of the most effective solution methods to solve network design problems. The traditional Lagrangian relaxations for the MCFND problem are the flow and knapsack relaxations, where the resulting Lagrangian subproblems decompose by commodity and by arc, respectively. We present new node-based relaxations, where the resulting subproblem decomposes by node. We show that the Lagrangian dual bound improves significantly upon the bounds of the traditional relaxations. We also propose a Lagrangian-based algorithm to obtain upper bounds. Network design problems have been the object of extensive literature reviews. However, in recent years, interesting applications of multilayer problems have appeared that are not covered in these surveys. We present a review of multilayer problems and propose a general formulation for the MLND. We also propose a general formulation and an efficient Lagrangian-based solution methodology for the MMCFND problem. The method is competitive with (and often significantly better than) a state-of-the-art mixedinteger programming solver on a large set of randomly generated instances

    Node-based Lagrangian relaxations for multicommodity capacitated fixed-charge network design

    Get PDF
    Classical Lagrangian relaxations for the multicommodity capacitated fixed-charge network design problem are the so-called flow and knapsack relaxations, where the resulting Lagrangian subproblems decompose by commodities and by arcs, respectively. We introduce node-based Lagrangian relaxations, where the resulting Lagrangian subproblem decomposes by nodes. We show that the Lagrangian dual bounds of these relaxations improve upon the linear programming relaxation bound, known to be equal to the Lagrangian dual bounds for the flow and knapsack relaxations. We also develop a Lagrangian matheuristic to compute upper bounds. The computational results on a set of benchmark instances show that the Lagrangian matheuristic is competitive with the state-of-the-art heuristics from the literature

    Route-based transportation network design

    Get PDF
    Given shipment demand and driving regulations, a consolidation carrier has to make decisions on how to route both shipments and drivers at minimal cost. The traditional way to formulate and solve these problems is through the use of two-step models. This thesis presents a heuristic algorithm to solve an integrated model that can provide superior solutions. The algorithm combines a slope scaling initialization phase and tabu search to find high-quality solutions. The performance of the proposed heuristic is benchmarked against a commercial solver and these results indicate that the proposed method is able to produce better quality solutions for the similar solution time

    Hybrid Statistical Data Mining Framework for Multi-Commodity Fixed Charge Network Flow Problem

    Get PDF
    This paper presents a new approach to analyze the network structure in multi-commodity fixed charge network flow problems (MCFCNF). This methodology uses historical data produced from repeatedly solving the traditional MCFCNF mathematical model as input for the machine-learning framework. Further, we reshape the problem as a binary classification problem and employ machine-learning algorithms to predict network structure. This predicted network structure is further used as an initial solution for our mathematical model. The quality of the initial solution generated is judged on the basis of predictive accuracy, feasibility and reduction in solving time

    Scheduled service network design for integrated planning of rail freight transportation

    Get PDF
    Cette thèse étudie une approche intégrant la gestion de l’horaire et la conception de réseaux de services pour le transport ferroviaire de marchandises. Le transport par rail s’articule autour d’une structure à deux niveaux de consolidation où l’affectation des wagons aux blocs ainsi que des blocs aux services représentent des décisions qui complexifient grandement la gestion des opérations. Dans cette thèse, les deux processus de consolidation ainsi que l’horaire d’exploitation sont étudiés simultanément. La résolution de ce problème permet d’identifier un plan d’exploitation rentable comprenant les politiques de blocage, le routage et l’horaire des trains, de même que l’habillage ainsi que l’affectation du traffic. Afin de décrire les différentes activités ferroviaires au niveau tactique, nous étendons le réseau physique et construisons une structure de réseau espace-temps comprenant trois couches dans lequel la dimension liée au temps prend en considération les impacts temporels sur les opérations. De plus, les opérations relatives aux trains, blocs et wagons sont décrites par différentes couches. Sur la base de cette structure de réseau, nous modélisons ce problème de planification ferroviaire comme un problème de conception de réseaux de services. Le modèle proposé se formule comme un programme mathématique en variables mixtes. Ce dernie r s’avère très difficile à résoudre en raison de la grande taille des instances traitées et de sa complexité intrinsèque. Trois versions sont étudiées : le modèle simplifié (comprenant des services directs uniquement), le modèle complet (comprenant des services directs et multi-arrêts), ainsi qu’un modèle complet à très grande échelle. Plusieurs heuristiques sont développées afin d’obtenir de bonnes solutions en des temps de calcul raisonnables. Premièrement, un cas particulier avec services directs est analysé. En considérant une cara ctéristique spécifique du problème de conception de réseaux de services directs nous développons un nouvel algorithme de recherche avec tabous. Un voisinage par cycles est privilégié à cet effet. Celui-ci est basé sur la distribution du flot circulant sur les blocs selon les cycles issus du réseau résiduel. Un algorithme basé sur l’ajustement de pente est développé pour le modèle complet, et nous proposons une nouvelle méthode, appelée recherche ellipsoidale, permettant d’améliorer davantage la qualité de la solution. La recherche ellipsoidale combine les bonnes solutions admissibles générées par l’algorithme d’ajustement de pente, et regroupe les caractéristiques des bonnes solutions afin de créer un problème élite qui est résolu de facon exacte à l’aide d’un logiciel commercial. L’heuristique tire donc avantage de la vitesse de convergence de l’algorithme d’ajustement de pente et de la qualité de solution de la recherche ellipsoidale. Les tests numériques illustrent l’efficacité de l’heuristique proposée. En outre, l’algorithme représente une alternative intéressante afin de résoudre le problème simplifié. Enfin, nous étudions le modèle complet à très grande échelle. Une heuristique hybride est développée en intégrant les idées de l’algorithme précédemment décrit et la génération de colonnes. Nous proposons une nouvelle procédure d’ajustement de pente où, par rapport à l’ancienne, seule l’approximation des couts liés aux services est considérée. La nouvelle approche d’ajustement de pente sépare ainsi les décisions associées aux blocs et aux services afin de fournir une décomposition naturelle du problème. Les résultats numériques obtenus montrent que l’algorithme est en mesure d’identifier des solutions de qualité dans un contexte visant la résolution d’instances réelles.This thesis studies a scheduled service network design problem for rail freight transportation planning. Rails follow a special two level consolidation organization, and the car-to-block, block-to-service handling procedure complicates daily operations. In this research, the two consolidation processes as well as the operation schedule are considered simultaneously, and by solving this problem, we provide an overall cost-effective operating plan, including blocking policy, train routing, scheduling, make-up policy and traffic distribution. In order to describe various rail operations at the tactical level, we extend the physical network and construct a 3-layer time-space structure, in which the time dimension takes into consideration the temporal impacts on operations. Furthermore, operations on trains, blocks, and cars are described in different layers. Based on this network structure, we model the rail planning problem to a service network design formulation. The proposed model relies on a complex mixed-integer programming formulation. The problem is very hard to solve due to the computational difficulty as well as the tremendous size of the application instances. Three versions of the problem are studied, which are the simplified model (with only non-stop services), complete model (with both non-stop and multi-stop services) and very-large-scale complete model. Heuristic algorithms are developed to provide good feasible solutions in reasonable computing efforts. A special case with non-stop services is first studied. According to a specific characteristic of the direct service network design problem, we develop a tabu search algorithm. The tabu search moves in a cycle-based neighborhood, where flows on blocks are re-distributed according to the cycles in a conceptual residual network. A slope scaling based algorithm is developed for the complete model, and we propose a new method, called ellipsoidal search, to further improve the solution quality. Ellipsoidal search combines the good feasible solutions generated from the slope scaling, and collects the features of good solutions into an elite problem, and solves it with exact solvers. The algorithm thus takes advantage of the convergence speed of slope scaling and solution quality of ellipsoidal search, and is proven effective. The algorithm also presents an alternative for solving the simplified problem. Finally, we work on the very-large-size complete model. A hybrid heuristic is developed by integrating the ideas of previous research with column generation. We propose a new slope scaling scheme where, compared with the previous scheme, only approximate service costs instead of both service and block costs are considered. The new slope scaling scheme thus separates the block decisions and service decisions, and provide a natural decomposition of the problem. Experiments show the algorithm is good to solve real-life size instances

    Decomposition methods for large-scale network expansion problems

    Get PDF
    Network expansion problems are a special class of multi-period network design problems in which arcs can be opened gradually in different time periods but can never be closed. Motivated by practical applications, we focus on cases where demand between origin-destination pairs expands over a discrete time horizon. Arc opening decisions are taken in every period, and once an arc is opened it can be used throughout the remaining horizon to route several commodities. Our model captures a key timing trade-off: the earlier an arc is opened, the more periods it can be used for, but its fixed cost is higher, since it accounts not only for construction but also for maintenance over the remaining horizon. An overview of practical applications indicates that this trade-off is relevant in various settings. For the capacitated variant, we develop an arc-based Lagrange relaxation, combined with local improvement heuristics. For uncapacitated problems, we develop four Benders decompositi
    • …
    corecore