1,674 research outputs found

    Polymeric Microsensors for Intraoperative Contact Pressure Measurement

    Get PDF
    Biocompatible sensors have been demonstrated using traditional microfabrication techniques modified for polymer substrates and utilize only materials suitable for implantation or bodily contact. Sensor arrays for the measurement of the load condition of polyethylene spacers in the total knee arthroplasty (TKA) prosthesis have been developed. Arrays of capacitive sensors are used to determine the three-dimensional strain within the polyethylene prosthesis component. Data from these sensors can be used to give researchers a better understanding of component motion, loading, and wear phenomena for a large range of activities. This dissertation demonstrates both analytically and experimentally the fabrication of these sensor arrays using biocompatible polymer substrates and dielectrics while preserving industry-standard microfabrication processing for micron-level resolution. An array of sensors for real-time measurement of pressure profiles is the long-term goal of this research. A custom design using capacitive-based sensors is an excellent selection for such measurement, giving high spatial resolution across the sensing surface and high load resolution for pressures applied normal to that surface while operating at low power

    Doctor of Philosophy

    Get PDF
    dissertationThis thesis presents the design, fabrication and characterization of a microelectromechanical system (MEMS) based complete wireless microsystem for brain interfacing, with very high quality factor and low power consumption. Components of the neuron sensing system include TiW fixed-fixed bridge resonator, MEMS oscillator based action-potential-to-RF module, and high-efficiency RF coil link for power and data transmissions. First, TiW fixed-fixed bridge resonator on glass substrate was fabricated and characterized, with resonance frequency of 100 - 500 kHz, and a quality factor up to 2,000 inside 10 mT vacuum. The effect of surface conditions on resonator's quality factor was studied with 10s of nm Al2O3 layer deposition with ALD (atomic layer deposition). It was found that MEMS resonator's quality factor decreased with increasing surface roughness. Second, action-potential-to-RF module was realized with MEMS oscillator based on TiW bridge resonator. Oscillation signal with frequency of 442 kHz and phase noise of -84.75 dBc/Hz at 1 kHz offset was obtained. DC biasing of the MEMS oscillator was modulated with neural signal so that the output RF waveform carries the neural signal information. Third, high-efficiency RF coil link for power and data communications was designed and realized. Based on the coupled mode theory (CMT), intermediate resonance coil was introduced and increased voltage transfer efficiency by up to 5 times. Finally, a complete neural interfacing system was demonstrated with board-level integration. The system consists of both internal and external systems, with wireless powering, wireless data transfer, artificial neuron signal generation, neural signal modulation and demodulation, and computer interface displaying restored neuron signal

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Contactless Test Access Mechanism for 3D IC

    Get PDF
    3D IC integration presents many advantages over the current 2D IC integration. It has the potential to reduce the power consumption and the physical size while supporting higher bandwidth and processing speed. Through Silicon Via’s (TSVs) are vertical interconnects between different layers of 3D ICs with a typical 5μm diameter and 50μm length. To test a 3D IC, an access mechanism is needed to apply test vectors to TSVs and observe their responses. However, TSVs are too small for access by current wafer probes and direct TSV probing may affect their physical integrity. In addition, the probe needles for direct TSV probing must be cleaned or replaced frequently. Contactless probing method resolves most of the TSV probing problems and can be employed for small-pitch TSVs. In this dissertation, contactless test access mechanisms for 3D IC have been explored using capacitive and inductive coupling techniques. Circuit models for capacitive and inductive communication links are extracted using 3D full-wave simulations and then circuit level simulations are carried out using Advanced Design System (ADS) design environment to verify the results. The effects of cross-talk and misalignment on the communication link have been investigated. A contactless TSV probing method using capacitive coupling is proposed and simulated. A prototype was fabricated using TSMC 65nm CMOS technology to verify the proposed method. The measurement results on the fabricated prototype show that this TSV probing scheme presents -55dB insertion loss at 1GHz frequency and maintains higher than 35dB signal-to-noise ratio within 5µm distance. A microscale contactless probe based on the principle of resonant inductive coupling has also been designed and simulated. Experimental measurements on a prototype fabricated in TSMC 65nm CMOS technology indicate that the data signal on the TSV can be reconstructed when the distance between the TSV and the probe remains less than 15µm

    Innovative micro-NMR/MRI functionality utilizing flexible electronics and control systems

    Get PDF
    Das zentrale Thema dieser Arbeit ist die Entwicklung und Integration von flexibler Elektronik für Mikro-Magnetresonanz (MR)-Anwendungen. Zwei wichtige Anwendungen wurden in der Dissertation behandelt; eine Anwendung auf dem Gebiet der Magnetresonanztomographie (MRI) und die andere auf dem Gebiet der Kernspinresonanz (NMR). Die MRI-Anwendung konzentriert sich auf die Lösung der Sicherheits- und Zuverlässigkeitsaspekte von MR-Kathetern. Die NMR-Anwendung stellt einen neuartigen Ansatz zur Steigerung des Durchsatzes bei der NMR-Spektroskopie vor. Der erste Teil der Dissertation behandelt die verschiedenen Technologien die zur Herstellung flexibler Elektronik auf der Mikroskala entwickelt wurden. Die behandelten MR-Anwendungen erfordern die Herstellung von Induktoren, Kondensatoren und Dioden auf flexiblen Substraten. Die erste Technologie, die im Rahmen der Mikrofabrikation behandelt wird, ist das Aufbringen einer leitfähigen Startschicht auf flexiblen Substraten. Es wurden verschiedene Techniken getestet und verglichen. Die entwickelte Technologie ermöglicht die Herstellung einer mehrschichtigen leitfähigen Struktur auf einem flexiblen Substrat (50 μ\mum Dicke), die sich zum Umwickeln eines schlanken Rohres (>0,5 mm Durchmesser) eignet. Die zweite Methode ist der Tintenstrahldruck von Kondensatoren mit hoher Dichte und niedrigem Verlustkoeffizienten. Zwei dielektrische Tinten auf Polymerbasis wurden synthetisiert, durch die Dispersion von TiO2_2 und BaTiO3_3 in Benzocyclobuten (BCB) Polymer. Die im Tintenstrahldruckverfahren hergestellten Kondensatoren zeigen eine relativ hohe Kapazität pro Flächeneinheit von bis zu 69 pFmm2^{-2} und erreichen dabei einen Qualitätsfaktor (Q) von etwa 100. Außerdem wurde eine Technik für eine tintenstrahlgedruckte gleichrichtende Schottky-Diode entwickelt. Die letzte behandelte Technologie ist die Galvanisierung der leitenden Startschichten. Die Galvanik ist eine gut erforschte Technologie und ein sehr wichtiger Prozess auf dem Gebiet der Mikrofabrikation. Sie ist jedoch in hohem Maße von der Erfahrung des Bedieners abhängig. Darüber hinaus ist eine präzise Steuerung der Galvanikleistung erforderlich, insbesondere bei der Herstellung kleiner Strukturen, wobei sich die Pulsgalvanik als ein Verfahren erwiesen hat, das ein hohes Maß an Kontrolle über die abgeschiedene Struktur bietet. In diesem Zusammenhang wurde eine hochflexible Stromquelle auf Basis einer Mikrocontroller-Einheit entwickelt, um Genauigkeit in die Erstellung optimaler Galvanikrezepte zu bringen. Die Stromquelle wurde auf Basis einer modifizierten Howland-Stromquelle (MHCS) unter Verwendung eines Hochleistungs-Operationsverstärkers (OPAMP) aufgebaut. Die Stromquelle wurde validiert und verifiziert, und ihre hohe Leistungsfähigkeit wurde durch die Durchführung einiger schwieriger Anwendungen demonstriert, von denen die wichtigste die Verbesserung der Haftung der im Tintenstrahldruckverfahren gedruckten Startschicht auf flexiblen Substraten ist. Der zweite Teil der Dissertation befasst sich mit interventioneller MRT mittels MR-Katheter. MR-Katheter haben potenziell einen erheblichen Einfluss auf den Bereich der minimalinvasiven medizinischen Eingriffe. Implantierte längliche Übertragungsleiter und Detektorspulen wirken wie eine Antenne und koppeln sich an das MR-Hochfrequenz (HF)-Sendefeld an und machen so den Katheter während des Einsatzes in einem MRT-Scanner sichtbar. Durch diese Kopplung können sich die Leiter jedoch erhitzen, was zu einer gefährlichen Erwärmung des Gewebes führt und eine breite Anwendung dieser Technologie bisher verhindert hat. Ein alternativer Ansatz besteht darin, einen Resonator an der Katheterspitze induktive mit einer Oberflächenspule außerhalb des Körpers zu koppeln. Allerdings könnte sich auch dieser Mikroresonator an der Katheterspitze während der Anregungsphase erwärmen. Außerdem ändert sich die Sichtbarkeit der Katheterspitze, wenn sich die axiale Ausrichtung des Katheters während der Bewegung ändert, und kann verloren gehen, wenn die Magnetfelder des drahtlosen Resonators und der externen Spule orthogonal sind. In diesem Beitrag wird die Abstimmkapazität des Mikrodetektors des Katheters drahtlos über eine Impulsfolgensteuerung gesteuert, die an einen HF-Abstimmkreis gesendet wird, der in eine Detektorspule integriert ist. Der integrierte Schaltkreis erzeugt Gleichstrom aus dem übertragenen HF Signal zur Steuerung der Kapazität aus der Ferne, wodurch ein intelligenter eingebetteter abstimmbarer Detektor an der Katheterspitze entsteht. Während der HF-Übertragung erfolgt die Entkopplung durch eine Feinabstimmung der Detektorbetriebsfrequenz weg von der Larmor-Frequenz. Zusätzlich wird ein neuartiges Detektordesign eingeführt, das auf zwei senkrecht ausgerichteten Mikro-Saddle-Spulen basiert, die eine konstante Sichtbarkeit des Katheters für den gesamten Bereich der axialen Ausrichtungen ohne toten Winkel gewährleisten. Das System wurde experimentell in einem 1T MRT-Scanner verifiziert. Der dritte Teil der Dissertation befasst sich mit dem Durchsatz von NMR-Spektroskopie. Flussbasierte NMR ist eine vielversprechende Technik zur Verbesserung des NMR-Durchsatzes. Eine häufige Herausforderung ist jedoch das relativ große Totvolumen im Schlauch, der den NMR-Detektor speist. In diesem Beitrag wird ein neuartiger Ansatz für vollautomatische NMR-Spektroskopie mit hohem Durchsatz und verbesserter Massensensitivität vorgestellt. Der entwickelte Ansatz wird durch die Nutzung von Mikrofluidik-Technologien in Kombination mit Dünnfilm-Mikro-NMR-Detektoren verwirklicht. Es wurde ein passender NMR-Sensor mit einem mikrofluidischen System entwickelt, das Folgendes umfasst: i) einen Mikro-Sattel-Detektor für die NMR-Spektroskopie und ii) ein Paar Durchflusssensoren, die den NMR-Detektor flankieren und an eine Mikrocontrollereinheit angeschlossen sind. Ein mikrofluidischer Schlauch wird verwendet, um eine Probenserie durch den Sondenkopf zu transportieren, die einzelnen Probenbereiche sind durch eine nicht mischbare Flüssigkeit getrennt, das System erlaubt im Prinzip eine unbegrenzte Anzahl an Proben. Das entwickelte System verfolgt die Position und Geschwindigkeit der Proben in diesem zweiphasigen Fluss und synchronisiert die NMR-Akquisition. Der entwickelte kundenspezifische Sondenkopf ist Plug-and-Play-fähig mit marktüblichen NMR-Systemen. Das System wurde erfolgreich zur Automatisierung von flussbasierten NMR-Messungen in einem 500 MHz NMR-System eingesetzt. Der entwickelte Mikro-NMR-Detektor ermöglicht hochauflösende Spektroskopie mit einer NMR-Empfindlichkeit von 2,18 nmol s1/2^{1/2} bei Betrieb der Durchflusssensoren. Die Durchflusssensoren wiesen eine hohe Empfindlichkeit bis zu einem absoluten Unterschied von 0,2 in der relativen Permittivität auf, was eine Differenzierung zwischen den meisten gängigen Lösungsmitteln ermöglichte. Es wurde gezeigt, dass eine vollautomatische NMR-Spektroskopie von neun verschiedenen 120 μ\muL Proben innerhalb von 3,6 min oder effektiv 15,3 s pro Probe erreicht werden konnte

    A High-Yield Microfabrication Process for Sapphire Substrate Pressure Sensors with Low Parasitic Capacitances and 200 C Tolerance

    Full text link
    Microelectromechanical systems (MEMS) can offer many benefits over conventional sensor assembly, especially as the desire for smaller and more effective instrumentation escalates in demand. While many industries continually strive for improved sensing capabilities, those invested in natural gas and oil extraction have a particular interest in miniaturized pressure sensing systems. These sensors need to operate autonomously in harsh environment (50 MPa, 125°C) fissures (≤1 cm) with at least 10 bit pressure resolution (≤0.05 MPa). The primary focus of this report is the development of a surface micromachining process to fabricate high performance capacitive pressures sensors, utilizing dielectric substrates to enable extremely low offset and parasitic capacitances and temperature coefficients. In contrast to conventional bulk silicon micromachining methods that use various kinds of etch stops such as electrochemical or dopant selective, dry additive processes are utilized to reduce manufacturing complexity, cost, and material consumption and have gained favor in recent years as the tools have matured. The fabricated devices must meet both pressure sensing and dimensional scaling requirements with a full scale range of ≥50 MPa, resolution of ≤50 kPa (>20 fF/MPa with a system resolution of 1 fF/code), and size of ≤2×1×0.5 mm3. In order to meet these goals while maximizing yield, particular attention has been given to the interplay between equipment limitations and device design. Process and design features have been refined over four process generations that together lead to a capacitance response of >450 fF/MPa over 50 MPa, provide a yield of >80%, permit an extreme span (>1000×) of full scale range designs, and allow automated system assembly. Devices have been tested at pressures and temperatures of up to ≥50 MPa and 200°C, representing downhole environments, demonstrating < 7.0 kPa (< 1 psi) resolution. Devices designed to operate over a much lower full scale range of < 50 kPa (≤350 Torr), representing biomedical applications, have been tested and demonstrate a resolution of < 80 Pa (< 0.6 Torr). Sensor response and design have been validated in the primary use case of autonomous microsystem integration. The system circuity includes a microcontroller, capacitance-to-digital converter, temperature sensor, photodiode, and battery. The readout electronics and sensor are mounted onto a flexible PCB, packaged into stainless steel or ceramic shells, sealed with silicone epoxy to permit pressure transmission while providing environmental protection, and measure < 9×9×7 mm3 in size. The systems have been successfully field tested in a brine well. While the capacitive pressure sensors have been developed primarily for active microsystems, there may be situations where a wired connection to the readout circuitry is not possible. A passive wireless pressure monitoring system utilizing short range inductive coupling has been developed to evaluate the performance of the sapphire substrate sensors for this use case. The passive sensing element consists of the capacitive pressure sensor and an inductor, packaged in a 3D printed biocompatible housing measuring ø12 x 24 mm3. Pressure monitoring within the GI tract has been targeted; an in situ resolution of 1.6 kPa (12 Torr) at 6 cm has been achieved through conductive saline. A practical application of the sensor has been demonstrated in vivo, having been ingested and successfully interrogated in a canine model to monitor stomach pressure for over two days.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149856/1/acbenken_1.pd

    Development of micromachined millimeter-wave modules for next-generation wireless transceiver front-ends

    Get PDF
    This thesis discusses the design, fabrication, integration and characterization of millimeter wave passive components using polymer-core-conductor surface micromachining technologies. Several antennas, including a W-band broadband micromachined monopole antenna on a lossy glass substrate, and a Ka-band elevated patch antenna, and a V-band micromachined horn antenna, are presented. All antennas have advantages such as a broad operation band and high efficiency. A low-loss broadband coupler and a high-Q cavity for millimeter-wave applications, using surface micromachining technologies is reported using the same technology. Several low-loss all-pole band-pass filters and transmission-zero filters are developed, respectively. Superior simulation and measurement results show that polymer-core-conductor surface micromachining is a powerful technology for the integration of high-performance cavity, coupler and filters. Integration of high performance millimeter-wave transceiver front-end is also presented for the first time. By elevating a cavity-filter-based duplexer and a horn antenna on top of the substrate and using air as the filler, the dielectric loss can be eliminated. A full-duplex transceiver front-end integrated with amplifiers are designed, fabricated, and comprehensively characterized to demonstrate advantages brought by this surface micromachining technology. It is a low loss and substrate-independent solution for millimeter-wave transceiver integration.Ph.D.Committee Chair: John Papapolymerou; Committee Chair: Manos Tentzeris; Committee Member: Gordon Stuber; Committee Member: John Cressler; Committee Member: John Z. Zhang; Committee Member: Joy Laska

    Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    Full text link
    In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300um, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz^-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the photonic detection of electromagnetic waves. Finally, we propose some future work, including a Teraherz wave sensor based on antenna-coupled electro-optic polymer filled plasmonic slot waveguide, as well as a fully packaged and tailgated device.Comment: 20 pages, 16 figure
    corecore