3,464 research outputs found

    Primitives for Contract-based Synchronization

    Full text link
    We investigate how contracts can be used to regulate the interaction between processes. To do that, we study a variant of the concurrent constraints calculus presented in [1], featuring primitives for multi-party synchronization via contracts. We proceed in two directions. First, we exploit our primitives to model some contract-based interactions. Then, we discuss how several models for concurrency can be expressed through our primitives. In particular, we encode the pi-calculus and graph rewriting.Comment: In Proceedings ICE 2010, arXiv:1010.530

    Mapping Fusion and Synchronized Hyperedge Replacement into Logic Programming

    Full text link
    In this paper we compare three different formalisms that can be used in the area of models for distributed, concurrent and mobile systems. In particular we analyze the relationships between a process calculus, the Fusion Calculus, graph transformations in the Synchronized Hyperedge Replacement with Hoare synchronization (HSHR) approach and logic programming. We present a translation from Fusion Calculus into HSHR (whereas Fusion Calculus uses Milner synchronization) and prove a correspondence between the reduction semantics of Fusion Calculus and HSHR transitions. We also present a mapping from HSHR into a transactional version of logic programming and prove that there is a full correspondence between the two formalisms. The resulting mapping from Fusion Calculus to logic programming is interesting since it shows the tight analogies between the two formalisms, in particular for handling name generation and mobility. The intermediate step in terms of HSHR is convenient since graph transformations allow for multiple, remote synchronizations, as required by Fusion Calculus semantics.Comment: 44 pages, 8 figures, to appear in a special issue of Theory and Practice of Logic Programming, minor revisio

    An Algebra of Hierarchical Graphs

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects

    An Algebra of Hierarchical Graphs and its Application to Structural Encoding

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects. In particular, we propose the use of our graph formalism as a convenient way to describe configurations in process calculi equipped with inherently hierarchical features such as sessions, locations, transactions, membranes or ambients. The graph syntax can be seen as an intermediate representation language, that facilitates the encodings of algebraic specifications, since it provides primitives for nesting, name restriction and parallel composition. In addition, proving soundness and correctness of an encoding (i.e. proving that structurally equivalent processes are mapped to isomorphic graphs) becomes easier as it can be done by induction over the graph syntax

    Chemical concrete machine

    Full text link
    The chemical concrete machine is a graph rewriting system which uses only local moves (rewrites), seen as chemical reactions involving molecules which are graphs made up by 4 trivalent nodes. It is Turing complete, therefore it might be used as a model of computation in algorithmic chemistry

    Deriving Bisimulation Congruences using 2-Categories

    No full text
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell
    • ā€¦
    corecore