30 research outputs found

    An approximability-related parameter on graphs―-properties and applications

    Get PDF
    Graph TheoryInternational audienceWe introduce a binary parameter on optimisation problems called separation. The parameter is used to relate the approximation ratios of different optimisation problems; in other words, we can convert approximability (and non-approximability) result for one problem into (non)-approximability results for other problems. Our main application is the problem (weighted) maximum H-colourable subgraph (Max H-Col), which is a restriction of the general maximum constraint satisfaction problem (Max CSP) to a single, binary, and symmetric relation. Using known approximation ratios for Max k-cut, we obtain general asymptotic approximability results for Max H-Col for an arbitrary graph H. For several classes of graphs, we provide near-optimal results under the unique games conjecture. We also investigate separation as a graph parameter. In this vein, we study its properties on circular complete graphs. Furthermore, we establish a close connection to work by Šámal on cubical colourings of graphs. This connection shows that our parameter is closely related to a special type of chromatic number. We believe that this insight may turn out to be crucial for understanding the behaviour of the parameter, and in the longer term, for understanding the approximability of optimisation problems such as Max H-Col

    No distributed quantum advantage for approximate graph coloring

    Full text link
    We give an almost complete characterization of the hardness of cc-coloring χ\chi-chromatic graphs with distributed algorithms, for a wide range of models of distributed computing. In particular, we show that these problems do not admit any distributed quantum advantage. To do that: 1) We give a new distributed algorithm that finds a cc-coloring in χ\chi-chromatic graphs in O~(n1α)\tilde{\mathcal{O}}(n^{\frac{1}{\alpha}}) rounds, with α=c1χ1\alpha = \bigl\lfloor\frac{c-1}{\chi - 1}\bigr\rfloor. 2) We prove that any distributed algorithm for this problem requires Ω(n1α)\Omega(n^{\frac{1}{\alpha}}) rounds. Our upper bound holds in the classical, deterministic LOCAL model, while the near-matching lower bound holds in the non-signaling model. This model, introduced by Arfaoui and Fraigniaud in 2014, captures all models of distributed graph algorithms that obey physical causality; this includes not only classical deterministic LOCAL and randomized LOCAL but also quantum-LOCAL, even with a pre-shared quantum state. We also show that similar arguments can be used to prove that, e.g., 3-coloring 2-dimensional grids or cc-coloring trees remain hard problems even for the non-signaling model, and in particular do not admit any quantum advantage. Our lower-bound arguments are purely graph-theoretic at heart; no background on quantum information theory is needed to establish the proofs

    Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds

    Get PDF
    We study rainbow connectivity of graphs from the algorithmic and graph-theoretic points of view. The study is divided into three parts. First, we study the complexity of deciding whether a given edge-colored graph is rainbow-connected. That is, we seek to verify whether the graph has a path on which no color repeats between each pair of its vertices. We obtain a comprehensive map of the hardness landscape of the problem. While the problem is NP-complete in general, we identify several structural properties that render the problem tractable. At the same time, we strengthen the known NP-completeness results for the problem. We pinpoint various parameters for which the problem is fixed-parameter tractable, including dichotomy results for popular width parameters, such as treewidth and pathwidth. The study extends to variants of the problem that consider vertex-colored graphs and/or rainbow shortest paths. We also consider upper and lower bounds for exact parameterized algorithms. In particular, we show that when parameterized by the number of colors k, the existence of a rainbow s-t path can be decided in O∗ (2k ) time and polynomial space. For the highly related problem of finding a path on which all the k colors appear, i.e., a colorful path, we explain the modest progress over the last twenty years. Namely, we prove that the existence of an algorithm for finding a colorful path in (2 − ε)k nO(1) time for some ε > 0 disproves the so-called Set Cover Conjecture.Second, we focus on the problem of finding a rainbow coloring. The minimum number of colors for which a graph G is rainbow-connected is known as its rainbow connection number, denoted by rc(G). Likewise, the minimum number of colors required to establish a rainbow shortest path between each pair of vertices in G is known as its strong rainbow connection number, denoted by src(G). We give new hardness results for computing rc(G) and src(G), including their vertex variants. The hardness results exclude polynomial-time algorithms for restricted graph classes and also fast exact exponential-time algorithms (under reasonable complexity assumptions). For positive results, we show that rainbow coloring is tractable for e.g., graphs of bounded treewidth. In addition, we give positive parameterized results for certain variants and relaxations of the problems in which the goal is to save k colors from a trivial upper bound, or to rainbow connect only a certain number of vertex pairs.Third, we take a more graph-theoretic view on rainbow coloring. We observe upper bounds on the rainbow connection numbers in terms of other well-known graph parameters. Furthermore, despite the interest, there have been few results on the strong rainbow connection number of a graph. We give improved bounds and determine exactly the rainbow and strong rainbow connection numbers for some subclasses of chordal graphs. Finally, we pose open problems and conjectures arising from our work

    Usuzování s nekonzistentními informacemi

    Get PDF
    Tato dizertační práce studuje extenze čtyřhodnotové Belnapovy-Dunnovy logiky, tzv. superbelnapovské logiky, z pohledu abstraktní algebraické logiky. Popisujeme v ní globální strukturu svazu superbelnapovských logik a ukazu- jeme, že tento svaz lze zcela popsat pomocí tříd konečných grafů splňujících jisté uzávěrové podmínky. Také zde zavádíme teorii tzv. explozivních extenzí a používáme ji k důkazu nových vět o úplnosti pro superbelnapovské logiky. Poté rozvíjeme gentzenovskou teorii důkazů pro tyto logiky a použijeme ji k důkazu věty o interpolaci pro mnoho z těchto logik. Nakonec také studujeme rozšíření Belnapovy-Dunnovy logiky o operátor pravdivosti ∆. Klíčová slova: abstraktní algebraická logika, Belnapova-Dunnova logika, parakonzistentní logika, superbelnapovské logikyThis thesis studies the extensions of the four-valued Belnap-Dunn logic, called super-Belnap logics, from the point of view of abstract algebraic logic. We describe the global structure of the lattice of super-Belnap logics and show that this lattice can be fully described in terms of classes of finite graphs satisfying some closure conditions. We also introduce a theory of so- called explosive extensions and use it to prove new completeness theorems for super-Belnap logics. A Gentzen-style proof theory for these logics is then developed and used to establish interpolation for many of them. Finally, we also study the expansion of the Belnap-Dunn logic by the truth operator ∆. Keywords: abstract algebraic logic, Belnap-Dunn logic, paraconsistent logic, super-Belnap logicsKatedra logikyDepartment of LogicFaculty of ArtsFilozofická fakult

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Quasi-Modal Encounters Of The Third Kind: The Filling-In Of Visual Detail

    Get PDF
    Although Pessoa et al. imply that many aspects of the filling-in debate may be displaced by a regard for active vision, they remain loyal to naive neural reductionist explanations of certain pieces of psychophysical evidence. Alternative interpretations are provided for two specific examples and a new category of filling-in (of visual detail) is proposed
    corecore