978 research outputs found

    Interactivity And User-heterogeneity In On Demand Broadcast Video

    Get PDF
    Video-On-Demand (VOD) has appeared as an important technology for many multimedia applications such as news on demand, digital libraries, home entertainment, and distance learning. In its simplest form, delivery of a video stream requires a dedicated channel for each video session. This scheme is very expensive and non-scalable. To preserve server bandwidth, many users can share a channel using multicast. Two types of multicast have been considered. In a non-periodic multicast setting, users make video requests to the server; and it serves them according to some scheduling policy. In a periodic broadcast environment, the server does not wait for service requests. It broadcasts a video cyclically, e.g., a new stream of the same video is started every t seconds. Although, this type of approach does not guarantee true VOD, the worst service latency experienced by any client is less than t seconds. A distinct advantage of this approach is that it can serve a very large community of users using minimal server bandwidth. In VOD System it is desirable to provide the user with the video-cassette-recorder-like (VCR) capabilities such as fast-forwarding a video or jumping to a specific frame. This issue in the broadcast framework is addressed, where each video and its interactive version are broadcast repeatedly on the network. Existing techniques rely on data prefetching as the mechanism to provide this functionality. This approach provides limited usability since the prefetching rate cannot keep up with typical fast-forward speeds. In the same environment, end users might have access to different bandwidth capabilities at different times. Current periodic broadcast schemes, do not take advantage of high-bandwidth capabilities, nor do they adapt to the low-bandwidth limitation of the receivers. A heterogeneous technique is presented that can adapt to a range of receiving bandwidth capability. Given a server bandwidth and a range of different client bandwidths, users employing the proposed technique will choose either to use their full reception bandwidth capability and therefore accessing the video at a very short time, or using part or enough reception bandwidth at the expense of a longer access latency

    High definition systems in Japan

    Get PDF
    The successful implementation of a strategy to produce high-definition systems within the Japanese economy will favorably affect the fundamental competitiveness of Japan relative to the rest of the world. The development of an infrastructure necessary to support high-definition products and systems in that country involves major commitments of engineering resources, plants and equipment, educational programs and funding. The results of these efforts appear to affect virtually every aspect of the Japanese industrial complex. The results of assessments of the current progress of Japan toward the development of high-definition products and systems are presented. The assessments are based on the findings of a panel of U.S. experts made up of individuals from U.S. academia and industry, and derived from a study of the Japanese literature combined with visits to the primary relevant industrial laboratories and development agencies in Japan. Specific coverage includes an evaluation of progress in R&D for high-definition television (HDTV) displays that are evolving in Japan; high-definition standards and equipment development; Japanese intentions for the use of HDTV; economic evaluation of Japan's public policy initiatives in support of high-definition systems; management analysis of Japan's strategy of leverage with respect to high-definition products and systems

    Best-Effort Patching for Multicast True VoD Service

    Full text link
    A multicast Video-on-Demand (VoD) system allows clients to share a server stream by batching their requests, and hence, improves channel utilization. However, it is very difficult to equip such a VoD system with full support for interactive VCR functions which are important to a growing number of Internet applications. In order to eliminate service (admission) latency, patching was proposed to enable an existing multicast session to dynamically add new clients, and requests can be served without delay if patching channels are available. A true VoD (TVoD) service should support not only zero-delay client admission but also continuous VCR-like interactivity. However, the conventional patching is only suitable for admission control. We propose a new patching scheme, called Best-Effort Patching (BEP), that offers a TVoD service in terms of both request admission and VCR interactivity. Moreover, by using a novel dynamic merging algorithm, BEP significantly improves the efficiency of TVoD interactivity, especially for popular videos. We also model and evaluate the efficiency of the dynamic merging algorithm. It is shown that BEP outperforms the conventional TVoD interaction protocols.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47328/1/11042_2005_Article_6851.pd

    Video delivery technologies for large-scale deployment of multimedia applications

    Full text link

    Video On Demand System For Heterogeneous Wireless Mobile Networks

    Get PDF
    In recent years, the services of the Video on Demand (VOD) system have taken place with the improvement of the high-speed networking and enhancement of the digital video technology. The VOD system allows users to select their desired videos from a remote server, so that they can watch them instantly anytime and anywhere through public communication networks. Currently the challenge of the VOD system is to provide a seamless video access to different type of devices with a small service delay in the existing heterogeneous network environments, such as WIMAX network. There are many issues need to be tackled in designing a VOD system including the system architectures, broadcasting techniques, caching techniques, transitions between different networks, and heterogeneous mobile devices. This thesis presents a new system architecture called Video on Demand system architecture for Heterogeneous Mobile Network (VODHMN) environment. This system architecture supports VOD services for heterogeneous devices with a different capability through different networks with a limited broadcasting bandwidth. The VODHMN system architecture introduces two new components that are consist of Local Media Forwarder (LMF) and Global Media Forwarder (GMF) components as compared to the existing architecture. Both of these components can cope with the wireless environment in term of connectivity

    Digital Video Recorder Driven Impacts on the Video Content Services Industry

    Get PDF
    Being part of a larger research program, this paper focuses on the impacts of so-called \u27Digital Video Recorders\u27 (DVRs) on the video content services industry. First, it gives a succinct definition of the video content services industry using the value chain as a metaphor. After laying a brief theoretical foundation on technological change and adoption, it considers the technological factors \u27increased broadband connectivity to the home\u27 and \u27increased storage capacities\u27 as change drivers in the video content services industry. The paper then highlights DVRs in detail (features, history, evolution, and viewer behavior) and investigates implications of a DVR roll-out for the different value propositions of players in the industry. It concludes with a brief outlook for the industry in the light of new technological developments

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u
    corecore