183 research outputs found

    A Broadband Beamformer Using Controllable Constraints and Minimum Variance

    Get PDF

    A Partitioned Approach to Signal Separation with Microphone Ad Hoc Arrays

    Get PDF

    A Framework for Speech Enhancement with Ad Hoc Microphone Arrays

    Get PDF

    Fundamental Frequency and Direction-of-Arrival Estimation for Multichannel Speech Enhancement

    Get PDF

    MU-MIMO Communications with MIMO Radar: From Co-existence to Joint Transmission

    Get PDF
    Beamforming techniques are proposed for a joint multi-input-multi-output (MIMO) radar-communication (RadCom) system, where a single device acts both as a radar and a communication base station (BS) by simultaneously communicating with downlink users and detecting radar targets. Two operational options are considered, where we first split the antennas into two groups, one for radar and the other for communication. Under this deployment, the radar signal is designed to fall into the null-space of the downlink channel. The communication beamformer is optimized such that the beampattern obtained matches the radar's beampattern while satisfying the communication performance requirements. To reduce the optimizations' constraints, we consider a second operational option, where all the antennas transmit a joint waveform that is shared by both radar and communications. In this case, we formulate an appropriate probing beampattern, while guaranteeing the performance of the downlink communications. By incorporating the SINR constraints into objective functions as penalty terms, we further simplify the original beamforming designs to weighted optimizations, and solve them by efficient manifold algorithms. Numerical results show that the shared deployment outperforms the separated case significantly, and the proposed weighted optimizations achieve a similar performance to the original optimizations, despite their significantly lower computational complexity.Comment: 15 pages, 15 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Radio-frequency chain selection for energy and spectral efficiency maximization in hybrid beamforming under hardware imperfections

    Get PDF
    The next-generation wireless communications require reduced energy consumption, increased data rates and better signal coverage. The millimetre-wave frequency spectrum above 30 GHz can help fulfil the performance requirements of the next-generation mobile broadband systems. Multiple-input multiple-output technology can provide performance gains to help mitigate the increased path loss experienced at millimetre-wave frequencies compared with microwave bands. Emerging hybrid beamforming architectures can reduce the energy consumption and hardware complexity with the use of fewer radio-frequency (RF) chains. Energy efficiency is identified as a key fifth-generation metric and will have a major impact on the hybrid beamforming system design. In terms of transceiver power consumption, deactivating parts of the beamformer structure to reduce power typically leads to significant loss of spectral efficiency. Our aim is to achieve the highest energy efficiency for the millimetre-wave communications system while mitigating the resulting loss in spectral efficiency. To achieve this, we propose an optimal selection framework which activates specific RF chains that amplify the digitally beamformed signals with the analogue beamforming network. Practical precoding is considered by including the effects of user interference, noise and hardware impairments in the system modelling

    Radio frequency-chain selection for energy and spectral efficiency maximization in hybrid beamforming under hardware imperfections

    Get PDF
    The next-generation wireless communications require reduced energy consumption, increased data rates and better signal coverage. The millimetre-wave frequency spectrum above 30 GHz can help fulfil the performance requirements of the next-generation mobile broadband systems. Multiple-input multiple-output technology can provide performance gains to help mitigate the increased path loss experienced at millimetre-wave frequencies compared with microwave bands. Emerging hybrid beamforming architectures can reduce the energy consumption and hardware complexity with the use of fewer radio-frequency (RF) chains. Energy efficiency is identified as a key fifth-generation metric and will have a major impact on the hybrid beamforming system design. In terms of transceiver power consumption, deactivating parts of the beamformer structure to reduce power typically leads to significant loss of spectral efficiency. Our aim is to achieve the highest energy efficiency for the millimetre-wave communications system while mitigating the resulting loss in spectral efficiency. To achieve this, we propose an optimal selection framework which activates specific RF chains that amplify the digitally beamformed signals with the analogue beamforming network. Practical precoding is considered by including the effects of user interference, noise and hardware impairments in the system modelling

    Towards Dual-functional Radar-Communication Systems: Optimal Waveform Design

    Get PDF
    We focus on a dual-functional multi-input-multi-output (MIMO) radar-communication (RadCom) system, where a single transmitter communicates with downlink cellular users and detects radar targets simultaneously. Several design criteria are considered for minimizing the downlink multi-user interference. First, we consider both the omnidirectional and directional beampattern design problems, where the closed-form globally optimal solutions are obtained. Based on these waveforms, we further consider a weighted optimization to enable a flexible trade-off between radar and communications performance and introduce a low-complexity algorithm. The computational costs of the above three designs are shown to be similar to the conventional zero-forcing (ZF) precoding. Moreover, to address the more practical constant modulus waveform design problem, we propose a branch-and-bound algorithm that obtains a globally optimal solution and derive its worst-case complexity as a function of the maximum iteration number. Finally, we assess the effectiveness of the proposed waveform design approaches by numerical results.Comment: 13 pages, 10 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Wideband data-independent beamforming for subarrays

    Get PDF
    The desire to operate large antenna arrays for e.g. RADAR applications over a wider frequency range is currently limited by the hardware, which due to weight, cost and size only permits complex multipliers behind each element. In contrast, wideband processing would have to rely on tap delay lines enabling digital filters for every element.As an intermediate step, in this thesis we consider a design where elements are grouped into subarrays, within which elements are still individually controlled by narrowband complex weights, but where each subarray output is given a tap delay line or finite impulse response digital filter for further wideband processing. Firstly, this thesis explores how a tap delay line attached to every subarray can be designed as a delay-and-sum beamformer. This filter is set to realised a fractional delay design based on a windowed sinc function. At the element level, we show that designing a narrowband beam w.r.t. a centre frequency of wideband operation is suboptimal,and suggest an optimisation technique that can yield sufficiently accurate gain over a frequency band of interest for an arbitrary look direction, which however comes at the cost of reduced aperture efficiency, as well as significantly increased sidelobes. We also suggest an adaptive method to enhance the frequency characteristic of a partial wideband array design, by utilising subarrays pointing in different directions in different frequency bands - resolved by means of a filter bank - to adaptively suppress undesired components in the beam patterns of the subarrays. Finally, the thesis proposes a novel array design approach obtained by rotational tiling of subarrays such that the overall array aperture is densely constructed from the same geometric subarray by rotation and translation only. Since the grating lobes of differently oriented subarrays do not necessarily align, an effective grating lobe attenuation w.r.t. the main beam is achieved. Based on a review of findings from geometry,a number of designs are highlight and transformed into numerical examples, and the theoretically expected grating lobe suppression is compared to uniformly spaced arrays.Supported by a number of models and simulations, the thesis thus suggests various numerical and hardware design techniques, mainly the addition of tap-delay-line per subarray and some added processing overhead, that can help to construct a large partial wideband array close in wideband performance to currently existing hardware.The desire to operate large antenna arrays for e.g. RADAR applications over a wider frequency range is currently limited by the hardware, which due to weight, cost and size only permits complex multipliers behind each element. In contrast, wideband processing would have to rely on tap delay lines enabling digital filters for every element.As an intermediate step, in this thesis we consider a design where elements are grouped into subarrays, within which elements are still individually controlled by narrowband complex weights, but where each subarray output is given a tap delay line or finite impulse response digital filter for further wideband processing. Firstly, this thesis explores how a tap delay line attached to every subarray can be designed as a delay-and-sum beamformer. This filter is set to realised a fractional delay design based on a windowed sinc function. At the element level, we show that designing a narrowband beam w.r.t. a centre frequency of wideband operation is suboptimal,and suggest an optimisation technique that can yield sufficiently accurate gain over a frequency band of interest for an arbitrary look direction, which however comes at the cost of reduced aperture efficiency, as well as significantly increased sidelobes. We also suggest an adaptive method to enhance the frequency characteristic of a partial wideband array design, by utilising subarrays pointing in different directions in different frequency bands - resolved by means of a filter bank - to adaptively suppress undesired components in the beam patterns of the subarrays. Finally, the thesis proposes a novel array design approach obtained by rotational tiling of subarrays such that the overall array aperture is densely constructed from the same geometric subarray by rotation and translation only. Since the grating lobes of differently oriented subarrays do not necessarily align, an effective grating lobe attenuation w.r.t. the main beam is achieved. Based on a review of findings from geometry,a number of designs are highlight and transformed into numerical examples, and the theoretically expected grating lobe suppression is compared to uniformly spaced arrays.Supported by a number of models and simulations, the thesis thus suggests various numerical and hardware design techniques, mainly the addition of tap-delay-line per subarray and some added processing overhead, that can help to construct a large partial wideband array close in wideband performance to currently existing hardware
    • …
    corecore