1,713 research outputs found

    An Approach to Detect the Origin and Distribution of Software Defects in an Evolving Cyber-Physical System

    Get PDF
    Cyber-Physical Systems (CPS) are usually developed by an incremental approach. A changing environment like demanding user requirements or legislation amendments lead often to multiple development paths in an evolving CPS. Hence, software variability plays an increasingly important role adapting the characteristics of such CPS to different contexts. This paper focuses on software variability realized through a Software Product Line (SPL) more specifically. Thereby, variability and evolution are usually managed in different tools. However with respect to software defects, a holistic handling of variability and evolution is necessary to ensure a reliable software defect removal. Particularly, detecting software defects in different evolution stages and derived variants is ordinary, but complex and error-prone. To close the gap between variability and evolution, this paper presents a systematic approach to combine both disciplines. In particular, we apply existing variant management techniques in combination with software configuration management methods to determine a software defect's origin and distribution in an evolving SPL. We apply our approach to a CPS from the automotive domain to show its industrial relevance and usefulness

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Trustworthiness in Mobile Cyber Physical Systems

    Get PDF
    Computing and communication capabilities are increasingly embedded in diverse objects and structures in the physical environment. They will link the ‘cyberworld’ of computing and communications with the physical world. These applications are called cyber physical systems (CPS). Obviously, the increased involvement of real-world entities leads to a greater demand for trustworthy systems. Hence, we use "system trustworthiness" here, which can guarantee continuous service in the presence of internal errors or external attacks. Mobile CPS (MCPS) is a prominent subcategory of CPS in which the physical component has no permanent location. Mobile Internet devices already provide ubiquitous platforms for building novel MCPS applications. The objective of this Special Issue is to contribute to research in modern/future trustworthy MCPS, including design, modeling, simulation, dependability, and so on. It is imperative to address the issues which are critical to their mobility, report significant advances in the underlying science, and discuss the challenges of development and implementation in various applications of MCPS

    Malware distributions and graph structure of the Web

    Full text link
    Knowledge about the graph structure of the Web is important for understanding this complex socio-technical system and for devising proper policies supporting its future development. Knowledge about the differences between clean and malicious parts of the Web is important for understanding potential treats to its users and for devising protection mechanisms. In this study, we conduct data science methods on a large crawl of surface and deep Web pages with the aim to increase such knowledge. To accomplish this, we answer the following questions. Which theoretical distributions explain important local characteristics and network properties of websites? How are these characteristics and properties different between clean and malicious (malware-affected) websites? What is the prediction power of local characteristics and network properties to classify malware websites? To the best of our knowledge, this is the first large-scale study describing the differences in global properties between malicious and clean parts of the Web. In other words, our work is building on and bridging the gap between \textit{Web science} that tackles large-scale graph representations and \textit{Web cyber security} that is concerned with malicious activities on the Web. The results presented herein can also help antivirus vendors in devising approaches to improve their detection algorithms

    Modeling, Simulation, and Analysis of Cascading Outages in Power Systems

    Get PDF
    Interconnected power systems are prone to cascading outages leading to large-area blackouts. Modeling, simulation, analysis, and mitigation of cascading outages are still challenges for power system operators and planners.Firstly, the interaction model and interaction graph proposed by [27] are demonstrated on a realistic Northeastern Power Coordinating Council (NPCC) power system, identifying key links and components that contribute most to the propagation of cascading outages. Then a multi-layer interaction graph for analysis and mitigation of cascading outages is proposed. It provides a practical, comprehensive framework for prediction of outage propagation and decision making on mitigation strategies. It has multiple layers to respectively identify key links and components, which contribute the most to outage propagation. Based on the multi-layer interaction graph, effective mitigation strategies can be further developed. A three-layer interaction graph is constructed and demonstrated on the NPCC power system.Secondly, this thesis proposes a novel steady-state approach for simulating cascading outages. The approach employs a power flow-based model that considers static power-frequency characteristics of both generators and loads. Thus, the system frequency deviation can be calculated under cascading outages and control actions such as under-frequency load shedding can be simulated. Further, a new AC optimal power flow model considering frequency deviation (AC-OPFf) is proposed to simulate remedial control against system collapse. Case studies on the two-area, IEEE 39-bus, and NPCC power systems show that the proposed approach can more accurately capture the propagation of cascading outages when compared with a conventional approach using the conventional power flow and AC optimal power flow models.Thirdly, in order to reduce the potential risk caused by cascading outages, an online strategy of critical component-based active islanding is proposed. It is performed when any component belonging to a predefined set of critical components is involved in the propagation path. The set of critical components whose fail can cause large risk are identified based on the interaction graph. Test results on the NPCC power system show that the cascading outage risk can be reduced significantly by performing the proposed active islanding when compared with the risk of other scenarios without active islanding

    Real-time Prediction of Cascading Failures in Power Systems

    Get PDF
    Blackouts in power systems cause major financial and societal losses, which necessitate devising better prediction techniques that are specifically tailored to detecting and preventing them. Since blackouts begin as a cascading failure (CF), an early detection of these CFs gives the operators ample time to stop the cascade from propagating into a large-scale blackout. In this thesis, a real-time load-based prediction model for CFs using phasor measurement units (PMUs) is proposed. The proposed model provides load-based predictions; therefore, it has the advantages of being applicable as a controller input and providing the operators with better information about the affected regions. In addition, it can aid in visualizing the effects of the CF on the grid. To extend the functionality and robustness of the proposed model, prediction intervals are incorporated based on the convergence width criterion (CWC) to allow the model to account for the uncertainties of the network, which was not available in previous works. Although this model addresses many issues in previous works, it has limitations in both scalability and capturing of transient behaviours. Hence, a second model based on recurrent neural network (RNN) long short-term memory (LSTM) ensemble is proposed. The RNN-LSTM is added to better capture the dynamics of the power system while also giving faster responses. To accommodate for the scalability of the model, a novel selection criterion for inputs is introduced to minimize the inputs while maintaining a high information entropy. The criteria include distance between buses as per graph theory, centrality of the buses with respect to fault location, and the information entropy of the bus. These criteria are merged using higher statistical moments to reflect the importance of each bus and generate indices that describe the grid with a smaller set of inputs. The results indicate that this model has the potential to provide more meaningful and accurate results than what is available in the previous literature and can be used as part of the integrated remedial action scheme (RAS) system either as a warning tool or a controller input as the accuracy of detecting affected regions reached 99.9% with a maximum delay of 400 ms. Finally, a validation loop extension is introduced to allow the model to self-update in real-time using importance sampling and case-based reasoning to extend the practicality of the model by allowing it to learn from historical data as time progresses

    A Temporal Framework for Hypergame Analysis of Cyber Physical Systems in Contested Environments

    Get PDF
    Game theory is used to model conflicts between one or more players over resources. It offers players a way to reason, allowing rationale for selecting strategies that avoid the worst outcome. Game theory lacks the ability to incorporate advantages one player may have over another player. A meta-game, known as a hypergame, occurs when one player does not know or fully understand all the strategies of a game. Hypergame theory builds upon the utility of game theory by allowing a player to outmaneuver an opponent, thus obtaining a more preferred outcome with higher utility. Recent work in hypergame theory has focused on normal form static games that lack the ability to encode several realistic strategies. One example of this is when a player’s available actions in the future is dependent on his selection in the past. This work presents a temporal framework for hypergame models. This framework is the first application of temporal logic to hypergames and provides a more flexible modeling for domain experts. With this new framework for hypergames, the concepts of trust, distrust, mistrust, and deception are formalized. While past literature references deception in hypergame research, this work is the first to formalize the definition for hypergames. As a demonstration of the new temporal framework for hypergames, it is applied to classical game theoretical examples, as well as a complex supervisory control and data acquisition (SCADA) network temporal hypergame. The SCADA network is an example includes actions that have a temporal dependency, where a choice in the first round affects what decisions can be made in the later round of the game. The demonstration results show that the framework is a realistic and flexible modeling method for a variety of applications
    • …
    corecore