1,236 research outputs found

    Using a conic bundle method to accelerate both phases of a quadratic convex reformulation

    Full text link
    We present algorithm MIQCR-CB that is an advancement of method MIQCR~(Billionnet, Elloumi and Lambert, 2012). MIQCR is a method for solving mixed-integer quadratic programs and works in two phases: the first phase determines an equivalent quadratic formulation with a convex objective function by solving a semidefinite problem (SDP)(SDP), and, in the second phase, the equivalent formulation is solved by a standard solver. As the reformulation relies on the solution of a large-scale semidefinite program, it is not tractable by existing semidefinite solvers, already for medium sized problems. To surmount this difficulty, we present in MIQCR-CB a subgradient algorithm within a Lagrangian duality framework for solving (SDP)(SDP) that substantially speeds up the first phase. Moreover, this algorithm leads to a reformulated problem of smaller size than the one obtained by the original MIQCR method which results in a shorter time for solving the second phase. We present extensive computational results to show the efficiency of our algorithm

    Exact Solution Methods for the kk-item Quadratic Knapsack Problem

    Full text link
    The purpose of this paper is to solve the 0-1 kk-item quadratic knapsack problem (kQKP)(kQKP), a problem of maximizing a quadratic function subject to two linear constraints. We propose an exact method based on semidefinite optimization. The semidefinite relaxation used in our approach includes simple rank one constraints, which can be handled efficiently by interior point methods. Furthermore, we strengthen the relaxation by polyhedral constraints and obtain approximate solutions to this semidefinite problem by applying a bundle method. We review other exact solution methods and compare all these approaches by experimenting with instances of various sizes and densities.Comment: 12 page

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    A Scalable Algorithm For Sparse Portfolio Selection

    Full text link
    The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum investment constraints. Existing certifiably optimal approaches to this problem do not converge within a practical amount of time at real world problem sizes with more than 400 securities. In this paper, we propose a more scalable approach. By imposing a ridge regularization term, we reformulate the problem as a convex binary optimization problem, which is solvable via an efficient outer-approximation procedure. We propose various techniques for improving the performance of the procedure, including a heuristic which supplies high-quality warm-starts, a preprocessing technique for decreasing the gap at the root node, and an analytic technique for strengthening our cuts. We also study the problem's Boolean relaxation, establish that it is second-order-cone representable, and supply a sufficient condition for its tightness. In numerical experiments, we establish that the outer-approximation procedure gives rise to dramatic speedups for sparse portfolio selection problems.Comment: Submitted to INFORMS Journal on Computin
    corecore