277 research outputs found

    Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation.

    Get PDF
    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery

    Pain as Feedback for Bionic Limbs

    Get PDF
    Abstract: This paper looks at advancements made in the area of thought controlled mechanical prosthesis that are being developed for amputees in order for them to regain mobility. It focuses on the brain-machine interface which is hardware and software that is used to control mechanical prosthesis or bionic limbs by sending and receiving signals between the prosthetic and the users mind. There is signaling feedback from the prosthesis to the user that indicates how much pressure is being applied to an object that is being grasped for instance. This paper explores the notion of the value of pain as a warning in the form of artificial feedback to help prevent damage and death to people and posits that pain should be included in the feedback loop so that when, for example, an artificial hand is in imminent danger of being burned the wearer is alerted

    EEG and ECoG features for Brain Computer Interface in Stroke Rehabilitation

    Get PDF
    The ability of non-invasive Brain-Computer Interface (BCI) to control an exoskeleton was used for motor rehabilitation in stroke patients or as an assistive device for the paralyzed. However, there is still a need to create a more reliable BCI that could be used to control several degrees of Freedom (DoFs) that could improve rehabilitation results. Decoding different movements from the same limb, high accuracy and reliability are some of the main difficulties when using conventional EEG-based BCIs and the challenges we tackled in this thesis. In this PhD thesis, we investigated that the classification of several functional hand reaching movements from the same limb using EEG is possible with acceptable accuracy. Moreover, we investigated how the recalibration could affect the classification results. For this reason, we tested the recalibration in each multi-class decoding for within session, recalibrated between-sessions, and between sessions. It was shown the great influence of recalibrating the generated classifier with data from the current session to improve stability and reliability of the decoding. Moreover, we used a multiclass extension of the Filter Bank Common Spatial Patterns (FBCSP) to improve the decoding accuracy based on features and compared it to our previous study using CSP. Sensorimotor-rhythm-based BCI systems have been used within the same frequency ranges as a way to influence brain plasticity or controlling external devices. However, neural oscillations have shown to synchronize activity according to motor and cognitive functions. For this reason, the existence of cross-frequency interactions produces oscillations with different frequencies in neural networks. In this PhD, we investigated for the first time the existence of cross-frequency coupling during rest and movement using ECoG in chronic stroke patients. We found that there is an exaggerated phase-amplitude coupling between the phase of alpha frequency and the amplitude of gamma frequency, which can be used as feature or target for neurofeedback interventions using BCIs. This coupling has been also reported in another neurological disorder affecting motor function (Parkinson and dystonia) but, to date, it has not been investigated in stroke patients. This finding might change the future design of assistive or therapeuthic BCI systems for motor restoration in stroke patients

    Brain-Computer Interfaces using Electrocorticography and Surface Stimulation

    Get PDF
    The brain connects to, modulates, and receives information from every organ in the body. As such, brain-computer interfaces (BCIs) have vast potential for diagnostics, medical therapies, and even augmentation or enhancement of normal functions. BCIs provide a means to explore the furthest corners of what it means to think, to feel, and to act—to experience the world and to be who you are. This work focuses on the development of a chronic bi-directional BCI for sensorimotor restoration through the use of separable frequency bands for recording motor intent and providing sensory feedback via electrocortical stimulation. Epidural cortical surface electrodes are used to both record electrocorticographic (ECoG) signals and provide stimulation without adverse effects associated with penetration through the protective dural barrier of brain. Chronic changes in electrode properties and signal characteristics are discussed, which inform optimal electrode designs and co-adaptive algorithms for decoding high-dimensional information. Additionally, a multi-layered approach to artifact suppression is presented, which includes a systems-level design of electronics, signal processing, and stimulus waveforms. The results of this work are relevant to a wider range of applications beyond ECoG and BCIs that involve closed-loop recording and stimulation throughout the body. By enabling simultaneous recording and stimulation through the techniques described here, responsive therapies can be developed that are tuned to individual patients and provide precision therapies at exactly the right place and time. This has the potential to improve targeted therapeutic outcomes while reducing undesirable side effects

    Human Ipsilateral Motor Physiology and Neuroprosthetic Applications in Chronic Stroke

    Get PDF
    Improving the recovery of lost motor function in hemiplegic chronic stroke survivors is a critical need to improve the lives of these patients. Over the last several decades, neuroprosthetic systems have emerged as novel tools with the potential to restore function in a variety of patient populations. While traditional neuroprosthetics have focused on using neural activity contralateral to a moving limb for device control, an alternative control signal may be necessary to develop brain-computer interface (BCI) systems in stroke survivors that suffer damage to the cortical hemisphere contralateral to the affected limb. While movement-related neural activity also occurs in the hemisphere ipsilateral to a moving limb, it is uncertain if these signals can be used within BCI systems. This dissertation examines the motor activity ipsilateral to a moving limb and the potential use of these signals for neuroprosthetic applications in chronic stroke survivors. Patients performed three-dimensional (3D) reaching movements with the arm ipsilateral to an electrocorticography (ECoG) array in order to assess the extent of kinematic information that can be decoded from the cortex ipsilateral to a moving limb. Additionally, patients performed the same task with the arm contralateral to the same ECoG arrays, allowing us to compare the neural representations of contralateral and ipsilateral limb movements. While spectral power changes related to ipsilateral arm movements begin later and are lower in amplitude than power changes related to contralateral arm movements, 3D kinematics from both contralateral and ipsilateral arm trajectories can be decoded with similar accuracies. The ability to decode movement kinematics from the ipsilateral cortical hemisphere demonstrates the potential to use these signals within BCI applications for controlling multiple degrees of freedom. Next we examined the relationship between electrode invasiveness and signal quality. The ability to decode movement kinematics from neural activity was significantly decreased in simulated electroencephalography (EEG) signals relative to ECoG signals, indicating that invasive signals would be necessary to implement BCI systems with multiple degrees of freedom. For ECoG signals, the human dura also causes a significant decrease in signal quality when electrodes with small spatial sizes are used. This tradeoff between signal quality and electrode invasiveness should therefore be taken into account when designing ECoG BCI systems. Finally, chronic stroke survivors used activity associated with affected hand motor intentions, recorded from their unaffected hemisphere using EEG, to control simple BCI systems. This demonstrates that motor signals from the ipsilateral hemisphere are viable for BCI applications, not only in motor-intact patients, but also in chronic stroke survivors. Taken together, these experiments provide initial demonstrations that it is possible to develop BCI systems using the unaffected hemisphere in stroke survivors with multiple degrees of freedom. Further development of these BCI systems may eventually lead to improving function for a significant population of patients

    State-dependent modulation of cortico-spinal networks

    Get PDF
    Beta-band rhythm (13-30 Hz) is a dominant oscillatory activity in the sensorimotor system. Numerous studies reported on links between motor performance and the cortical and cortico-spinal beta rhythm. However, these studies report divergent beta-band frequencies and are, additionally, based on differently performed motor-tasks (e.g., motor imagination, muscle contraction, reach, grasp, and attention). This diversity blurs the role of beta in the sensorimotor system. It consequently challenges the development of beta-band activity-dependent stimulation protocols in the sensorimotor system. In this vein, we studied the functional role of beta-band cortico-cortical and cortico-spinal networks during a motor learning task. We studied how the contribution of cortical and spinal beta changes in the course of learning, and how this modulation is affected by afferent feedback to the sensorimotor system. We furthermore researched the relationship to motor performance. Consider that we made our study in the absence of any residual movement to allow our findings to be translated into rehabilitation programs for severely affected stroke patients. This thesis, at first, investigates evoked responses after transcranial magnetic stimulation (TMS). This revealed two different beta-band networks, i.e., in the low and high beta-band reflecting cortical and cortico-spinal activity. We, then, used a broader frequency range in the beta-band to trigger passive opening of the hand (peripheral feedback) or cortical stimulation (cortical feedback). While a unilateral hemispheric increase in cortico-spinal synchronization was observed in the group with peripheral feedback, a bilateral hemispheric increase in cortico-cortical and cortico-spinal synchronization was observed for the group with cortical feedback. An improvement in motor performance was found in the peripheral group only. Additionally, an enhancement in the directed cortico-spinal synchronization from cortex to periphery was observed for the peripheral group. Similar neurophysiological and behavioral changes were observed for stroke patients receiving peripheral feedback. The results 6 suggest two different mechanisms for beta-band activity-dependent protocols depending on the feedback modality. While the peripheral feedback appears to increase the synchronization among neural groups, cortical stimulation appears to recruit dormant neurons and to extend the involved motor network. These findings may provide insights regarding the mechanism behind novel activity-dependent protocols. It also highlights the importance of afferent feedback for motor restoration in beta-band activity-dependent rehabilitation programs

    Central nervous system microstimulation: Towards selective micro-neuromodulation

    Get PDF
    Electrical stimulation technologies capable of modulating neural activity are well established for neuroscientific research and neurotherapeutics. Recent micro-neuromodulation experimental results continue to explain neural processing complexity and suggest the potential for assistive technologies capable of restoring or repairing of basic function. Nonetheless, performance is dependent upon the specificity of the stimulation. Increasingly specific stimulation is hypothesized to be achieved by progressively smaller interfaces. Miniaturization is a current focus of neural implants due to improvements in mitigation of the body's foreign body response. It is likely that these exciting technologies will offer the promise to provide large-scale micro-neuromodulation in the future. Here, we highlight recent successes of assistive technologies through bidirectional neuroprostheses currently being used to repair or restore basic brain functionality. Furthermore, we introduce recent neuromodulation technologies that might improve the effectiveness of these neuroprosthetic interfaces by increasing their chronic stability and microstimulation specificity. We suggest a vision where the natural progression of innovative technologies and scientific knowledge enables the ability to selectively micro-neuromodulate every neuron in the brain

    Controlling Assistive Machines in Paralysis Using Brain Waves and Other Biosignals

    Get PDF
    The extent to which humans can interact with machines significantly enhanced through inclusion of speech, gestures, and eye movements. However, these communication channels depend on a functional motor system. As many people suffer from severe damage of the motor system resulting in paralysis and inability to communicate, the development of brain-machine interfaces (BMI) that translate electric or metabolic brain activity into control signals of external devices promises to overcome this dependence. People with complete paralysis can learn to use their brain waves to control prosthetic devices or exoskeletons. However, information transfer rates of currently available noninvasive BMI systems are still very limited and do not allow versatile control and interaction with assistive machines. Thus, using brain waves in combination with other biosignals might significantly enhance the ability of people with a compromised motor system to interact with assistive machines. Here, we give an overview of the current state of assistive, noninvasive BMI research and propose to integrate brain waves and other biosignals for improved control and applicability of assistive machines in paralysis. Beside introducing an example of such a system, potential future developments are being discussed

    Personalized neuroprosthetics

    Get PDF
    Decades of technological developments have populated the field of neuroprosthetics with myriad replacement strategies, neuromodulation therapies, and rehabilitation procedures to improve the quality of life for individuals with neuromotor disorders. Despite the few but impressive clinical successes, and multiple breakthroughs in animal models, neuroprosthetic technologies remain mainly confined to sophisticated laboratory environments. We summarize the core principles and latest achievements in neuroprosthetics, but also address the challenges that lie along the path toward clinical fruition. We propose a pragmatic framework to personalise neurotechnologies and rehabilitation for patient-specific impairments to achieve the timely dissemination of neuroprosthetic medicine
    • …
    corecore