6,927 research outputs found

    Compressive Wave Computation

    Full text link
    This paper considers large-scale simulations of wave propagation phenomena. We argue that it is possible to accurately compute a wavefield by decomposing it onto a largely incomplete set of eigenfunctions of the Helmholtz operator, chosen at random, and that this provides a natural way of parallelizing wave simulations for memory-intensive applications. This paper shows that L1-Helmholtz recovery makes sense for wave computation, and identifies a regime in which it is provably effective: the one-dimensional wave equation with coefficients of small bounded variation. Under suitable assumptions we show that the number of eigenfunctions needed to evolve a sparse wavefield defined on N points, accurately with very high probability, is bounded by C log(N) log(log(N)), where C is related to the desired accuracy and can be made to grow at a much slower rate than N when the solution is sparse. The PDE estimates that underlie this result are new to the authors' knowledge and may be of independent mathematical interest; they include an L1 estimate for the wave equation, an estimate of extension of eigenfunctions, and a bound for eigenvalue gaps in Sturm-Liouville problems. Numerical examples are presented in one spatial dimension and show that as few as 10 percents of all eigenfunctions can suffice for accurate results. Finally, we argue that the compressive viewpoint suggests a competitive parallel algorithm for an adjoint-state inversion method in reflection seismology.Comment: 45 pages, 4 figure

    Block Circulant and Toeplitz Structures in the Linearized Hartreeā€“Fock Equation on Finite Lattices: Tensor Approach

    Get PDF
    This paper introduces and analyses the new grid-based tensor approach to approximate solution of the elliptic eigenvalue problem for the 3D lattice-structured systems. We consider the linearized Hartree-Fock equation over a spatial L1ƗL2ƗL3L_1\times L_2\times L_3 lattice for both periodic and non-periodic problem setting, discretized in the localized Gaussian-type orbitals basis. In the periodic case, the Galerkin system matrix obeys a three-level block-circulant structure that allows the FFT-based diagonalization, while for the finite extended systems in a box (Dirichlet boundary conditions) we arrive at the perturbed block-Toeplitz representation providing fast matrix-vector multiplication and low storage size. The proposed grid-based tensor techniques manifest the twofold benefits: (a) the entries of the Fock matrix are computed by 1D operations using low-rank tensors represented on a 3D grid, (b) in the periodic case the low-rank tensor structure in the diagonal blocks of the Fock matrix in the Fourier space reduces the conventional 3D FFT to the product of 1D FFTs. Lattice type systems in a box with Dirichlet boundary conditions are treated numerically by our previous tensor solver for single molecules, which makes possible calculations on rather large L1ƗL2ƗL3L_1\times L_2\times L_3 lattices due to reduced numerical cost for 3D problems. The numerical simulations for both box-type and periodic LƗ1Ɨ1L\times 1\times 1 lattice chain in a 3D rectangular "tube" with LL up to several hundred confirm the theoretical complexity bounds for the block-structured eigenvalue solvers in the limit of large LL.Comment: 30 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1408.383

    Approximation of the critical buckling factor for composite panels

    Get PDF
    This article is concerned with the approximation of the critical buckling factor for thin composite plates. A new method to improve the approximation of this critical factor is applied based on its behavior with respect to lamination parameters and loading conditions. This method allows accurate approximation of the critical buckling factor for non-orthotropic laminates under complex combined loadings (including shear loading). The influence of the stacking sequence and loading conditions is extensively studied as well as properties of the critical buckling factor behavior (e.g concavity over tensor D or out-of-plane lamination parameters). Moreover, the critical buckling factor is numerically shown to be piecewise linear for orthotropic laminates under combined loading whenever shear remains low and it is also shown to be piecewise continuous in the general case. Based on the numerically observed behavior, a new scheme for the approximation is applied that separates each buckling mode and builds linear, polynomial or rational regressions for each mode. Results of this approach and applications to structural optimization are presented

    Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization

    Get PDF
    We introduce a new variational method for the numerical homogenization of divergence form elliptic, parabolic and hyperbolic equations with arbitrary rough (LāˆžL^\infty) coefficients. Our method does not rely on concepts of ergodicity or scale-separation but on compactness properties of the solution space and a new variational approach to homogenization. The approximation space is generated by an interpolation basis (over scattered points forming a mesh of resolution HH) minimizing the L2L^2 norm of the source terms; its (pre-)computation involves minimizing O(Hāˆ’d)\mathcal{O}(H^{-d}) quadratic (cell) problems on (super-)localized sub-domains of size O(Hlnā”(1/H))\mathcal{O}(H \ln (1/ H)). The resulting localized linear systems remain sparse and banded. The resulting interpolation basis functions are biharmonic for dā‰¤3d\leq 3, and polyharmonic for dā‰„4d\geq 4, for the operator -\diiv(a\nabla \cdot) and can be seen as a generalization of polyharmonic splines to differential operators with arbitrary rough coefficients. The accuracy of the method (O(H)\mathcal{O}(H) in energy norm and independent from aspect ratios of the mesh formed by the scattered points) is established via the introduction of a new class of higher-order Poincar\'{e} inequalities. The method bypasses (pre-)computations on the full domain and naturally generalizes to time dependent problems, it also provides a natural solution to the inverse problem of recovering the solution of a divergence form elliptic equation from a finite number of point measurements.Comment: ESAIM: Mathematical Modelling and Numerical Analysis. Special issue (2013
    • ā€¦
    corecore