6,387 research outputs found

    An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution

    Get PDF
    We study the minimization of fixed-degree polynomials over the simplex. This problem is well-known to be NP-hard, as it contains the maximum stable set problem in graph theory as a special case. In this paper, we consider a rational approximation by taking the minimum over the regular grid, which consists of rational points with denominator rr (for given rr). We show that the associated convergence rate is O(1/r2)O(1/r^2) for quadratic polynomials. For general polynomials, if there exists a rational global minimizer over the simplex, we show that the convergence rate is also of the order O(1/r2)O(1/r^2). Our results answer a question posed by De Klerk et al. (2013) and improves on previously known O(1/r)O(1/r) bounds in the quadratic case.Comment: 17 page

    Lower Bounds for Real Solutions to Sparse Polynomial Systems

    Get PDF
    We show how to construct sparse polynomial systems that have non-trivial lower bounds on their numbers of real solutions. These are unmixed systems associated to certain polytopes. For the order polytope of a poset P this lower bound is the sign-imbalance of P and it holds if all maximal chains of P have length of the same parity. This theory also gives lower bounds in the real Schubert calculus through sagbi degeneration of the Grassmannian to a toric variety, and thus recovers a result of Eremenko and Gabrielov.Comment: 31 pages. Minor revision

    Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere

    Get PDF
    We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre [SIAM J. Optim. 21(3) (2011), pp. 864-885], for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r with respect to the surface measure. We show that the exact rate of convergence is Theta(1/r^2), and explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.Comment: 14 pages, 2 figure

    Compute-and-Forward: Finding the Best Equation

    Get PDF
    Compute-and-Forward is an emerging technique to deal with interference. It allows the receiver to decode a suitably chosen integer linear combination of the transmitted messages. The integer coefficients should be adapted to the channel fading state. Optimizing these coefficients is a Shortest Lattice Vector (SLV) problem. In general, the SLV problem is known to be prohibitively complex. In this paper, we show that the particular SLV instance resulting from the Compute-and-Forward problem can be solved in low polynomial complexity and give an explicit deterministic algorithm that is guaranteed to find the optimal solution.Comment: Paper presented at 52nd Allerton Conference, October 201
    • …
    corecore