11,649 research outputs found

    Beyond Disagreement-based Agnostic Active Learning

    Full text link
    We study agnostic active learning, where the goal is to learn a classifier in a pre-specified hypothesis class interactively with as few label queries as possible, while making no assumptions on the true function generating the labels. The main algorithms for this problem are {\em{disagreement-based active learning}}, which has a high label requirement, and {\em{margin-based active learning}}, which only applies to fairly restricted settings. A major challenge is to find an algorithm which achieves better label complexity, is consistent in an agnostic setting, and applies to general classification problems. In this paper, we provide such an algorithm. Our solution is based on two novel contributions -- a reduction from consistent active learning to confidence-rated prediction with guaranteed error, and a novel confidence-rated predictor

    Robust Interactive Learning

    Full text link
    In this paper we propose and study a generalization of the standard active-learning model where a more general type of query, class conditional query, is allowed. Such queries have been quite useful in applications, but have been lacking theoretical understanding. In this work, we characterize the power of such queries under two well-known noise models. We give nearly tight upper and lower bounds on the number of queries needed to learn both for the general agnostic setting and for the bounded noise model. We further show that our methods can be made adaptive to the (unknown) noise rate, with only negligible loss in query complexity

    Auditing: Active Learning with Outcome-Dependent Query Costs

    Full text link
    We propose a learning setting in which unlabeled data is free, and the cost of a label depends on its value, which is not known in advance. We study binary classification in an extreme case, where the algorithm only pays for negative labels. Our motivation are applications such as fraud detection, in which investigating an honest transaction should be avoided if possible. We term the setting auditing, and consider the auditing complexity of an algorithm: the number of negative labels the algorithm requires in order to learn a hypothesis with low relative error. We design auditing algorithms for simple hypothesis classes (thresholds and rectangles), and show that with these algorithms, the auditing complexity can be significantly lower than the active label complexity. We also discuss a general competitive approach for auditing and possible modifications to the framework.Comment: Corrections in section

    Agnostic Active Learning Without Constraints

    Full text link
    We present and analyze an agnostic active learning algorithm that works without keeping a version space. This is unlike all previous approaches where a restricted set of candidate hypotheses is maintained throughout learning, and only hypotheses from this set are ever returned. By avoiding this version space approach, our algorithm sheds the computational burden and brittleness associated with maintaining version spaces, yet still allows for substantial improvements over supervised learning for classification

    Rates of convergence in active learning

    Full text link
    We study the rates of convergence in generalization error achievable by active learning under various types of label noise. Additionally, we study the general problem of model selection for active learning with a nested hierarchy of hypothesis classes and propose an algorithm whose error rate provably converges to the best achievable error among classifiers in the hierarchy at a rate adaptive to both the complexity of the optimal classifier and the noise conditions. In particular, we state sufficient conditions for these rates to be dramatically faster than those achievable by passive learning.Comment: Published in at http://dx.doi.org/10.1214/10-AOS843 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore