441 research outputs found

    Ontology Based Statistical Automated Inference - New Approach to Artificial Intelligence

    Get PDF
    Statistical analysis requires understanding the nature of the phenomenon under study, as well as understanding sense of mathematical statistics. Bridging the gap between semantic web based on knowledge representation languages, and concepts described by mathematical formula is a challenge for AI. In order to overcome this gap the ontology language P-ONT (based on directed graph) has been invented. To illustrate the capabilities of the P-ONT language, semantic web (built on the P-ONT ontology) OLAP cube, relational data bases and generalized hierarchical statistical regression models are presented

    Business Intelligence on Non-Conventional Data

    Get PDF
    The revolution in digital communications witnessed over the last decade had a significant impact on the world of Business Intelligence (BI). In the big data era, the amount and diversity of data that can be collected and analyzed for the decision-making process transcends the restricted and structured set of internal data that BI systems are conventionally limited to. This thesis investigates the unique challenges imposed by three specific categories of non-conventional data: social data, linked data and schemaless data. Social data comprises the user-generated contents published through websites and social media, which can provide a fresh and timely perception about people’s tastes and opinions. In Social BI (SBI), the analysis focuses on topics, meant as specific concepts of interest within the subject area. In this context, this thesis proposes meta-star, an alternative strategy to the traditional star-schema for modeling hierarchies of topics to enable OLAP analyses. The thesis also presents an architectural framework of a real SBI project and a cross-disciplinary benchmark for SBI. Linked data employ the Resource Description Framework (RDF) to provide a public network of interlinked, structured, cross-domain knowledge. In this context, this thesis proposes an interactive and collaborative approach to build aggregation hierarchies from linked data. Schemaless data refers to the storage of data in NoSQL databases that do not force a predefined schema, but let database instances embed their own local schemata. In this context, this thesis proposes an approach to determine the schema profile of a document-based database; the goal is to facilitate users in a schema-on-read analysis process by understanding the rules that drove the usage of the different schemata. A final and complementary contribution of this thesis is an innovative technique in the field of recommendation systems to overcome user disorientation in the analysis of a large and heterogeneous wealth of data

    Interactive multidimensional modeling of linked data for exploratory OLAP

    Get PDF
    Exploratory OLAP aims at coupling the precision and detail of corporate data with the information wealth of LOD. While some techniques to create, publish, and query RDF cubes are already available, little has been said about how to contextualize these cubes with situational data in an on-demand fashion. In this paper we describe an approach, called iMOLD, that enables non-technical users to enrich an RDF cube with multidimensional knowledge by discovering aggregation hierarchies in LOD. This is done through a user-guided process that recognizes in the LOD the recurring modeling patterns that express roll-up relationships between RDF concepts, then translates these patterns into aggregation hierarchies to enrich the RDF cube. Two families of aggregation patterns are identified, based on associations and generalization respectively, and the algorithms for recognizing them are described. To evaluate iMOLD in terms of efficiency and effectiveness we compare it with a related approach in the literature, we propose a case study based on DBpedia, and we discuss the results of a test made with real users.Peer ReviewedPostprint (author's final draft

    Interactive Multidimensional Modeling of Linked Data for Exploratory OLAP

    Get PDF
    Exploratory OLAP aims at coupling the precision and detail of corporate data with the information wealth of LOD. While some techniques to create, publish, and query RDF cubes are already available, little has been said about how to contextualize these cubes with situational data in an on-demand fashion. In this paper we describe an approach, called iMOLD, that enables non-technical users to enrich an RDF cube with multidimensional knowledge by discovering aggregation hierarchies in LOD. This is done through a user-guided process that recognizes in the LOD the recurring modeling patterns that express roll- up relationships between RDF concepts, then translates these patterns into aggregation hierarchies to enrich the RDF cube. Two families of aggregation patterns are identified, based on associations and generalization respectively, and the algorithms for recognizing them are described. To evaluate iMOLD in terms of efficiency and effectiveness we compare it with a related approach in the literature, we propose a case study based on DBpedia, and we discuss the results of a test made with real users

    A Prototyped NL-Based Approach for the Design of Multidimensional Data Warehouse

    Get PDF
    Organizations are more and more interested in the Data Warehouse (DW) technology and data analytics to base their decision-making processes on scientific arguments instead of intuition. Despite the efforts invested, the DW design issue remains a great challenging research domain. The design quality of the DW depends on several aspects, as the requirement gathering. In this context, we propose a Natural Language (NL) based design approach, which is twofold, first, it facilitates the involvement of the decision-makers in the DW design process; indeed, NL can encourage the decision-makers to express their requirements as English-like sentences conform to NL-templates. Secondly, our approach aims to generate semi-automatically a DW schema from a set of requirements gathered as analytical queries compliant to the NL-templates. This design approach relies on (i) two easy-to-use NL-templates to specifying the analysis components, and (ii) a set of five heuristic rules for extracting the multidimensional concepts from the requirements. We demonstrate the feasibility of our approach by developing the prototype Natural Language Decisional Requirements to DW Schema (NLDR2DWS)

    Personalizing Interactions with Information Systems

    Get PDF
    Personalization constitutes the mechanisms and technologies necessary to customize information access to the end-user. It can be defined as the automatic adjustment of information content, structure, and presentation tailored to the individual. In this chapter, we study personalization from the viewpoint of personalizing interaction. The survey covers mechanisms for information-finding on the web, advanced information retrieval systems, dialog-based applications, and mobile access paradigms. Specific emphasis is placed on studying how users interact with an information system and how the system can encourage and foster interaction. This helps bring out the role of the personalization system as a facilitator which reconciles the user’s mental model with the underlying information system’s organization. Three tiers of personalization systems are presented, paying careful attention to interaction considerations. These tiers show how progressive levels of sophistication in interaction can be achieved. The chapter also surveys systems support technologies and niche application domains

    E‐ARK Dissemination Information Package (DIP) Final Specification

    Get PDF
    The primary aim of this report is to present the final version of the E-ARK Dissemination Information Package (DIP) formats. The secondary aim is to describe the access scenarios in which these DIP formats will be rendered for use

    Semantic metadata for supporting exploratory OLAP

    Get PDF
    Cotutela Universitat Politècnica de Catalunya i Aalborg UniversitetOn-Line Analytical Processing (OLAP) is an approach widely used for data analysis. OLAP is based on the multidimensional (MD) data model where factual data are related to their analytical perspectives called dimensions and together they form an n-dimensional data space referred to as data cube. MD data are typically stored in a data warehouse, which integrates data from in-house data sources, and then analyzed by means of OLAP operations, e.g., sales data can be (dis)aggregated along the location dimension. As OLAP proved to be quite intuitive, it became broadly accepted by non-technical and business users. However, as users still encountered difficulties in their analysis, different approaches focused on providing user assistance. These approaches collect situational metadata about users and their actions and provide suggestions and recommendations that can help users' analysis. However, although extensively exploited and evidently needed, little attention is paid to metadata in this context. Furthermore, new emerging tendencies call for expanding the use of OLAP to consider external data sources and heterogeneous settings. This leads to the Exploratory OLAP approach that especially argues for the use of Semantic Web (SW) technologies to facilitate the description and integration of external sources. With data becoming publicly available on the (Semantic) Web, the number and diversity of non-technical users are also significantly increasing. Thus, the metadata to support their analysis become even more relevant. This PhD thesis focuses on metadata for supporting Exploratory OLAP. The study explores the kinds of metadata artifacts used for the user assistance purposes and how they are exploited to provide assistance. Based on these findings, the study then aims at providing theoretical and practical means such as models, algorithms, and tools to address the gaps and challenges identified. First, based on a survey of existing user assistance approaches related to OLAP, the thesis proposes the analytical metadata (AM) framework. The framework includes the definition of the assistance process, the AM artifacts that are classified in a taxonomy, and the artifacts organization and related types of processing to support the user assistance. Second, the thesis proposes a semantic metamodel for AM. Hence, Resource Description Framework (RDF) is used to represent the AM artifacts in a flexible and re-usable manner, while the metamodeling abstraction level is used to overcome the heterogeneity of (meta)data models in the Exploratory OLAP context. Third, focusing on the schema as a fundamental metadata artifact for enabling OLAP, the thesis addresses some important challenges on constructing an MD schema on the SW using RDF. It provides the algorithms, method, and tool to construct an MD schema over statistical linked open data sets. Especially, the focus is on enabling that even non-technical users can perform this task. Lastly, the thesis deals with queries as the second most relevant artifact for user assistance. In the spirit of Exploratory OLAP, the thesis proposes an RDF-based model for OLAP queries created by instantiating the previously proposed metamodel. This model supports the sharing and reuse of queries across the SW and facilitates the metadata preparation for the assistance exploitation purposes. Finally, the results of this thesis provide metadata foundations for supporting Exploratory OLAP and advocate for greater attention to the modeling and use of semantics related to metadata.El processament analític en línia (OLAP) és una tècnica àmpliament utilitzada per a l'anàlisi de dades. OLAP es basa en el model multi-dimensional (MD) de dades, on dades factuals es relacionen amb les seves perspectives analítiques, anomenades dimensions, i conjuntament formen un espai de dades n-dimensional anomenat cub de dades. Les dades MD s'emmagatzemen típicament en un data warehouse (magatzem de dades), el qual integra dades de fonts internes, les quals posteriorment s'analitzen mitjançant operacions OLAP, per exemple, dades de vendes poden ser (des)agregades a partir de la dimensió ubicació. Un cop OLAP va ser provat com a intuïtiu, va ser ampliament acceptat tant per usuaris no tècnics com de negoci. Tanmateix, donat que els usuaris encara trobaven dificultats per a realitzar el seu anàlisi, diferents tècniques s'han enfocat en la seva assistència. Aquestes tècniques recullen metadades situacionals sobre els usuaris i les seves accions, i proporcionen suggerències i recomanacions per tal d'ajudar en aquest anàlisi. Tot i ésser extensivament emprades i necessàries, poca atenció s'ha prestat a les metadades en aquest context. A més a més, les noves tendències demanden l'expansió d'ús d'OLAP per tal de considerar fonts de dades externes en escenaris heterogenis. Això ens porta a la tècnica d'OLAP exploratori, la qual es basa en l'ús de tecnologies en la web semàntica (SW) per tal de facilitar la descripció i integració d'aquestes fonts externes. Amb les dades essent públicament disponibles a la web (semàntica), el nombre i diversitat d'usuaris no tècnics també incrementa signifícativament. Així doncs, les metadades per suportar el seu anàlisi esdevenen més rellevants. Aquesta tesi doctoral s'enfoca en l'ús de metadades per suportar OLAP exploratori. L'estudi explora els tipus d'artefactes de metadades utilitzats per l'assistència a l'usuari, i com aquests són explotats per proporcionar assistència. Basat en aquestes troballes, l'estudi preté proporcionar mitjans teòrics i pràctics, com models, algorismes i eines, per abordar els reptes identificats. Primerament, basant-se en un estudi de tècniques per assistència a l'usuari en OLAP, la tesi proposa el marc de treball de metadades analítiques (AM). Aquest marc inclou la definició del procés d'assistència, on els artefactes d'AM són classificats en una taxonomia, i l'organització dels artefactes i tipus relacionats de processament pel suport d'assistència a l'usuari. En segon lloc, la tesi proposa un meta-model semàntic per AM. Així doncs, s'utilitza el Resource Description Framework (RDF) per representar els artefactes d'AM d'una forma flexible i reusable, mentre que el nivell d'abstracció de metamodel s'utilitza per superar l'heterogeneïtat dels models de (meta)dades en un context d'OLAP exploratori. En tercer lloc, centrant-se en l'esquema com a artefacte fonamental de metadades per a OLAP, la tesi adreça reptes importants en la construcció d'un esquema MD en la SW usant RDF. Proporciona els algorismes, mètodes i eines per construir un esquema MD sobre conjunts de dades estadístics oberts i relacionats. Especialment, el focus rau en permetre que usuaris no tècnics puguin realitzar aquesta tasca. Finalment, la tesi tracta amb consultes com el segon artefacte més rellevant per l'assistència a usuari. En l'esperit d'OLAP exploratori, la tesi proposa un model basat en RDF per consultes OLAP instanciant el meta-model prèviament proposat. Aquest model suporta el compartiment i reutilització de consultes sobre la SW i facilita la preparació de metadades per l'explotació de l'assistència. Finalment, els resultats d'aquesta tesi proporcionen els fonaments en metadades per suportar l'OLAP exploratori i propugnen la major atenció al model i ús de semàntica relacionada a metadades.On-Line Analytical Processing (OLAP) er en bredt anvendt tilgang til dataanalyse. OLAP er baseret på den multidimensionelle (MD) datamodel, hvor faktuelle data relateres til analytiske synsvinkler, såkaldte dimensioner. Tilsammen danner de et n-dimensionelt rum af data kaldet en data cube. Multidimensionelle data er typisk lagret i et data warehouse, der integrerer data fra forskellige interne datakilder, og kan analyseres ved hjælp af OLAPoperationer. For eksempel kan salgsdata disaggregeres langs sted-dimensionen. OLAP har vist sig at være intuitiv at forstå og er blevet taget i brug af ikketekniske og orretningsorienterede brugere. Nye tilgange er siden blevet udviklet i forsøget på at afhjælpe de problemer, som denne slags brugere dog stadig står over for. Disse tilgange indsamler metadata om brugerne og deres handlinger og kommer efterfølgende med forslag og anbefalinger, der kan bidrage til brugernes analyse. På trods af at der er en klar nytteværdi i metadata (givet deres udbredelse), har stadig ikke været meget opmærksomhed på metadata i denne kotekst. Desuden lægger nye fremspirende teknikker nu op til en udvidelse af brugen af OLAP til også at bruge eksterne og uensartede datakilder. Dette har ført til Exploratory OLAP, en tilgang til OLAP, der benytter teknologier fra Semantic Web til at understøtte beskrivelse og integration af eksterne kilder. Efterhånden som mere data gøres offentligt tilgængeligt via Semantic Web, kommer flere og mere forskelligartede ikketekniske brugere også til. Derfor er metadata til understøttelsen af deres dataanalyser endnu mere relevant. Denne ph.d.-afhandling omhandler metadata, der understøtter Exploratory OLAP. Der foretages en undersøgelse af de former for metadata, der benyttes til at hjælpe brugere, og af, hvordan sådanne metadata kan udnyttes. Med grundlag i disse fund søges der løsninger til de identificerede problemer igennem teoretiske såvel som praktiske midler. Det vil sige modeller, algoritmer og værktøjer. På baggrund af en afdækning af eksisterende tilgange til brugerassistance i forbindelse med OLAP præsenteres først rammeværket Analytical Metadata (AM). Det inkluderer definition af assistanceprocessen, en taksonomi over tilhørende artefakter og endelig relaterede processeringsformer til brugerunderstøttelsen. Dernæst præsenteres en semantisk metamodel for AM. Der benyttes Resource Description Framework (RDF) til at repræsentere AM-artefakterne på en genbrugelig og fleksibel facon, mens metamodellens abstraktionsniveau har til formål at nedbringe uensartetheden af (meta)data i Exploratory OLAPs kontekst. Så fokuseres der på skemaet som en fundamental metadata-artefakt i OLAP, og afhandlingen tager fat i vigtige udfordringer i forbindelse med konstruktionen af multidimensionelle skemaer i Semantic Web ved brug af RDF. Der præsenteres algoritmer, metoder og redskaber til at konstruere disse skemaer sammenkoblede åbne statistiske datasæt. Der lægges særlig vægt på, at denne proces skal kunne udføres af ikke-tekniske brugere. Til slut tager afhandlingen fat i forespørgsler som anden vigtig artefakt inden for bruger-assistance. I samme ånd som Exploratory OLAP foreslås en RDF-baseret model for OLAP-forespørgsler, hvor førnævnte metamodel benyttes. Modellen understøtter deling og genbrug af forespørgsler over Semantic Web og fordrer klargørelsen af metadata med øje for assistance-relaterede formål. Endelig leder resultaterne af afhandlingen til fundamenterne for metadata i støttet Exploratory OLAP og opfordrer til en øget opmærksomhed på modelleringen og brugen af semantik i forhold til metadataPostprint (published version

    Flexible Integration and Efficient Analysis of Multidimensional Datasets from the Web

    Get PDF
    If numeric data from the Web are brought together, natural scientists can compare climate measurements with estimations, financial analysts can evaluate companies based on balance sheets and daily stock market values, and citizens can explore the GDP per capita from several data sources. However, heterogeneities and size of data remain a problem. This work presents methods to query a uniform view - the Global Cube - of available datasets from the Web and builds on Linked Data query approaches
    corecore