14,374 research outputs found

    CacophonyViz: Visualisation of Birdsong Derived Ecological Health Indicators

    Get PDF
    The purpose of this work was to create an easy to interpret visualisation of a simple index that represents the quantity and quality of bird life in New Zealand. The index was calculated from an algorithm that assigned various weights to each species of bird. This work is important as it forms a part of the ongoing work by the Cacophony Project which aims to eradicate pests that currently destroy New Zealand native birds and their habitat. The map will be used to promote the Cacophony project to a wide public audience and encourage their participation by giving relevant feedback on the effects of intervention such as planting and trapping in their communities. The Design Science methodology guided this work through the creation of a series of prototypes that through their evaluation built on lessons learnt at each stage resulting in a final artifact that successfully displayed the index at various locations across a map of New Zealand. It is concluded that the artifact is ready and suitable for deployment once the availability of real data from the automatic analysis of audio recordings from multiple locations becomes available

    CacophonyViz : Visualisation of birdsong derived ecological health indicators

    Get PDF
    The purpose of this work was to create an easy to interpret visualisation of a simple index that represents the quantity and quality of bird life in New Zealand. The index was calculated from an algorithm that assigned various weights to each species of bird. This work is important as it forms a part of the ongoing work by the Cacophony Project which aims to eradicate pests that currently destroy New Zealand native birds and their habitat. The map will be used to promote the Cacophony project to a wide public audience and encourage their participation by giving relevant feedback on the effects of intervention such as planting and trapping in their communities. The Design Science methodology guided this work through the creation of a series of prototypes that through their evaluation built on lessons learnt at each stage resulting in a final artifact that successfully displayed the index at various locations across a map of New Zealand. It is concluded that the artifact is ready and suitable for deployment once the availability of real data from the automatic analysis of audio recordings from multiple locations becomes available

    LIMO EEG: A Toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data

    Get PDF
    Magnetic- and electric-evoked brain responses have traditionally been analyzed by comparing the peaks or mean amplitudes of signals from selected channels and averaged across trials. More recently, tools have been developed to investigate single trial response variability (e.g., EEGLAB) and to test differences between averaged evoked responses over the entire scalp and time dimensions (e.g., SPM, Fieldtrip). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data. In addition, LIMO EEG provides robust parametric tests, therefore providing a new and complementary tool in the analysis of neural evoked responses

    Reviewing and extending the five-user assumption: A grounded procedure for interaction evaluation

    Get PDF
    " © ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Computer-Human Interaction (TOCHI), {VOL 20, ISS 5, (November 2013)} http://doi.acm.org/10.1145/2506210 "The debate concerning how many participants represents a sufficient number for interaction testing is well-established and long-running, with prominent contributions arguing that five users provide a good benchmark when seeking to discover interaction problems. We argue that adoption of five users in this context is often done with little understanding of the basis for, or implications of, the decision. We present an analysis of relevant research to clarify the meaning of the five-user assumption and to examine the way in which the original research that suggested it has been applied. This includes its blind adoption and application in some studies, and complaints about its inadequacies in others. We argue that the five-user assumption is often misunderstood, not only in the field of Human-Computer Interaction, but also in fields such as medical device design, or in business and information applications. The analysis that we present allows us to define a systematic approach for monitoring the sample discovery likelihood, in formative and summative evaluations, and for gathering information in order to make critical decisions during the interaction testing, while respecting the aim of the evaluation and allotted budget. This approach – which we call the ‘Grounded Procedure’ – is introduced and its value argued.The MATCH programme (EPSRC Grants: EP/F063822/1 EP/G012393/1

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    Pro-Resume: The Infographic Resume Builder

    Get PDF
    Scoring an interview is a challenge for any job seeker these days, thus having a unique and well-organized resume is crucial to grab a recruiter’s attention. Online resume builders such as ResumeNow and VisualizeMe have been created to help users build resumes; however, their templates are lacking in quantity, customizability, and in some instances, even legibility. Thus, our team set out to create an infographic online resume builder, a web application that allows its users to build, organize, and beautify their resumes to aid them in their job search. Our system allows for easy integration with their LinkedIn profiles so that their work history can be easily duplicated without typing everything out. There is also a large scope of infographic template options that users can choose from and, most importantly, users will have the ability to further customize their content and organization by using the system’s editing mode

    COEL: A Web-based Chemistry Simulation Framework

    Get PDF
    The chemical reaction network (CRN) is a widely used formalism to describe macroscopic behavior of chemical systems. Available tools for CRN modelling and simulation require local access, installation, and often involve local file storage, which is susceptible to loss, lacks searchable structure, and does not support concurrency. Furthermore, simulations are often single-threaded, and user interfaces are non-trivial to use. Therefore there are significant hurdles to conducting efficient and collaborative chemical research. In this paper, we introduce a new enterprise chemistry simulation framework, COEL, which addresses these issues. COEL is the first web-based framework of its kind. A visually pleasing and intuitive user interface, simulations that run on a large computational grid, reliable database storage, and transactional services make COEL ideal for collaborative research and education. COEL's most prominent features include ODE-based simulations of chemical reaction networks and multicompartment reaction networks, with rich options for user interactions with those networks. COEL provides DNA-strand displacement transformations and visualization (and is to our knowledge the first CRN framework to do so), GA optimization of rate constants, expression validation, an application-wide plotting engine, and SBML/Octave/Matlab export. We also present an overview of the underlying software and technologies employed and describe the main architectural decisions driving our development. COEL is available at http://coel-sim.org for selected research teams only. We plan to provide a part of COEL's functionality to the general public in the near future.Comment: 23 pages, 12 figures, 1 tabl

    Exploratory Analysis of Benchmark Experiments -- An Interactive Approach

    Get PDF
    The analysis of benchmark experiments consists in a large part of exploratory methods, especially visualizations. In Eugster et al. [2008] we presented a comprehensive toolbox including the bench plot. This plot visualizes the behavior of the algorithms on the individual drawn learning and test samples according to specific performance measures. In this paper we show an interactive version of the bench plot can easily uncover details and relations unseen with the static version
    corecore