543 research outputs found

    Fault Detection and Diagnosis of Electric Drives Using Intelligent Machine Learning Approaches

    Get PDF
    Electric motor condition monitoring can detect anomalies in the motor performance which have the potential to result in unexpected failure and financial loss. This study examines different fault detection and diagnosis approaches in induction motors and is presented in six chapters. First, an anomaly technique or outlier detection is applied to increase the accuracy of detecting broken rotor bars. It is shown how the proposed method can significantly improve network reliability by using one-class classification technique. Then, ensemble-based anomaly detection is utilized to compare different methods in ensemble learning in detection of broken rotor bars. Finally, a deep neural network is developed to extract significant features to be used as input parameters of the network. Deep autoencoder is then employed to build an advanced model to make predictions of broken rotor bars and bearing faults occurring in induction motors with a high accuracy

    DATA-DRIVEN TECHNIQUES FOR DIAGNOSING BEARING DEFECTS IN INDUCTION MOTORS

    Get PDF
    Induction motors are frequently used in many automated systems as a major driving force, and thus, their reliable performances are of predominant concerns. Induction motors are subject to different types of faults and an early detection of faults can reduce maintenance costs and prevent unscheduled downtime. Motor faults are generally related to three components: the stator, the rotor and/or the bearings. This study focuses on the fault diagnosis of the bearings, which is the major reason for failures in induction motors. Data-driven fault diagnosis systems usually include a classification model which is supported by an efficient pre-processing unit. Various classifiers, which aim to diagnose multiple bearing defects (i.e., ball, inner race and outer race defects of different diameters), require well-processed data. The pre-processing tasks plays a vital role for extracting informative features from the vibration signal, reducing the dimensionality of the features and selecting the best features from the feature pool. Once the vibration signal is perfectly analyzed and a proper feature subset is created, then fault classifiers can be trained. However, classification task can be difficult if the training dataset is not balanced. Induction motors usually operate under healthy condition (than faulty situation), thus the monitored vibration samples relate to the normal state of the system expected to be more than the samples of the faulty state. Here, in this work, this challenge is also considered so that the classification model needs to deal with class imbalance problem

    RVM-based adaboost scheme for stator interturn faults of the induction motor

    Get PDF
    This paper presents an AdaBoost method based on RVM (Relevance Vector Machine) to detect and locate an interturn short circuit fault in the stator windings of IM (Induction Machine). This method is achieved through constructing an Adaboost combined with a weak RVM multiclassifier based on a binary tree, and the fault features are extracted from the three phase shifts between the line current and the phase voltage of IM by establishing a global stator faulty model. The simulation results show that, compared with other competitors, the proposed method has a higher precision and a stronger generalization capability, and it can accurately detect and locate an interturn short circuit fault, thus demonstrating the effectiveness of the proposed method

    Real-Time Induction Motor Health Index Prediction in A Petrochemical Plant using Machine Learning

    Get PDF
    This paper presents real-time health prediction of induction motors (IMs) utilised in a petrochemical plant through the application of intelligent sensors and machine learning (ML) models. At present, maintenance engineers of the company implement time-based and condition-based maintenance techniques in periodically examining and diagnosing the health of IMs which results in sporadic breakdowns of IMs. Such breakdowns sometimes force the entire production process to stop for emergency maintenance resulting in a huge loss in the company’s revenue. Hence, top management decides to switch the operational practice to real-time predictive maintenance instead. Intelligent sensors are installed on IMs to collect necessary information related to their working statuses. ML exploits the real-time information received from intelligent sensors to flag abnormalities of mechanical or electrical components of IMs before potential failures are reached. Four ML models are investigated to evaluate which one is the best, i.e. Artificial Neural Network (ANN), Particle Swarm Optimization (PSO), Gradient Boosting Tree (GBT) and Random Forest (RF). Standard performance metrics are used to compare the relative effectiveness among different ML models including Precision, Recall, Accuracy, F1-score, and AUC-ROC curve. The results reveal that PSO not only obtains the highest average weighted Accuracy but also can differentiate the statuses (Class 0 – Class 3) of the IM more correctly than other counterpart models

    A Novel Machine Learning-Based Approach for Induction Machine Fault Classifier Development—A Broken Rotor Bar Case Study

    Get PDF
    Rotor bars are one of the most failure-critical components in induction machines. We present an approach for developing a rotor bar fault identification classifier for induction machines. The developed machine learning-based models are based on simulated electrical current and vibration velocity data and measured vibration acceleration data. We introduce an approach that combines sequential model-based optimization and the nested cross-validation procedure to provide a reliable estimation of the classifiers’ generalization performance. These methods have not been combined earlier in this context. Automation of selected parts of the modeling procedure is studied with the measured data. We compare the performance of logistic regression and CatBoost models using the fast Fourier-transformed signals or their extracted statistical features as the input data. We develop a technique to use domain knowledge to extract features from specific frequency ranges of the fast Fourier-transformed signals. While both approaches resulted in similar accuracy with simulated current and measured vibration acceleration data, the feature-based models were faster to develop and run. With measured vibration acceleration data, better accuracy was obtained with the raw fast Fourier-transformed signals. The results demonstrate that an accurate and fast broken rotor bar detection model can be developed with the presented approach

    A Novel Feature Extraction and Fault Detection Technique for the Intelligent Fault Identification of Water Pump Bearings

    Get PDF
    The reliable and cost-effective condition monitoring of the bearings installed in water pumps is a real challenge in the industry. This paper presents a novel strong feature selection and extraction algorithm (SFSEA) to extract fault-related features from the instantaneous power spectrum (IPS). The three features extracted from the IPS using the SFSEA are fed to an extreme gradient boosting (XBG) classifier to reliably detect and classify the minor bearing faults. The experiments performed on a lab-scale test setup demonstrated classification accuracy up to 100%, which is better than the previously reported fault classification accuracies and indicates the effectiveness of the proposed method

    A Framework for the Automated Parameterization of a Sensorless Bearing Fault Detection Pipeline

    Full text link
    This study proposes a framework for the automated hyperparameter optimization of a bearing fault detection pipeline for permanent magnet synchronous motors (PMSMs) without the need of external sensors. A automated machine learning (AutoML) pipeline search is performed by means of a genetic optimization to reduce human induced bias due to inappropriate parameterizations. For this purpose, a search space is defined, which includes general methods of signal processing and manipulation as well as methods tailored to the respective task and domain. The proposed framework is evaluated on the bearing fault detection use case under real world conditions. Considerations on the generalization of the deployed fault detection pipelines are also taken into account. Likewise, attention was paid to experimental studies for evaluations of the robustness of the fault detection pipeline to variations of the motors working condition parameters between the training and test domain. The present work contributes to the research of fault detection on rotating machinery in the following terms: (1) Reduction of the human induced bias to the data science process, while still considering expert and task related knowledge, ending in a generic search approach (2) tackling the bearing fault detection task without the need for external sensors (sensorless) (3) learning a domain robust fault detection pipeline applicable to varying motor operating parameters without the need of re-parameterizations or fine-tuning (4) investigations on working condition discrepancies with an excessive degree to determine the pipeline limitations regarding the abstraction of the motor parameters and the pipeline hyperparametersComment: 8 pages, 4 figures, 5 tables, ieee conference paper template use

    Semi-Supervised Learning for Diagnosing Faults in Electromechanical Systems

    Get PDF
    Safe and reliable operation of the systems relies on the use of online condition monitoring and diagnostic systems that aim to take immediate actions upon the occurrence of a fault. Machine learning techniques are widely used for designing data-driven diagnostic models. The training procedure of a data-driven model usually requires a large amount of labeled data, which may not be always practical. This problem can be untangled by resorting to semi-supervised learning approaches, which enables the decision making procedure using only a few numbers of labeled samples coupled with a large number of unlabeled samples. Thus, it is crucial to conduct a critical study on the use of semi-supervised learning for the purpose of fault diagnosis. Another issue of concern is fault diagnosis in non-stationary environments, where data streams evolve over time, and as a result, model-based and most of the data-driven models are impractical. In this work, this has been addressed by means of an adaptive data-driven diagnostic model

    A Study on Comparison of Classification Algorithms for Pump Failure Prediction

    Get PDF
    The reliability of pumps can be compromised by faults, impacting their functionality. Detecting these faults is crucial, and many studies have utilized motor current signals for this purpose. However, as pumps are rotational equipped, vibrations also play a vital role in fault identification. Rising pump failures have led to increased maintenance costs and unavailability, emphasizing the need for cost-effective and dependable machinery operation. This study addresses the imperative challenge of defect classification through the lens of predictive modeling. With a problem statement centered on achieving accurate and efficient identification of defects, this study’s objective is to evaluate the performance of five distinct algorithms: Fine Decision Tree, Medium Decision Tree, Bagged Trees (Ensemble), RUS-Boosted Trees, and Boosted Trees. Leveraging a comprehensive dataset, the study meticulously trained and tested each model, analyzing training accuracy, test accuracy, and Area Under the Curve (AUC) metrics. The results showcase the supremacy of the Fine Decision Tree (91.2% training accuracy, 74% test accuracy, AUC 0.80), the robustness of the Ensemble approach (Bagged Trees with 94.9% training accuracy, 99.9% test accuracy, and AUC 1.00), and the competitiveness of Boosted Trees (89.4% training accuracy, 72.2% test accuracy, AUC 0.79) in defect classification. Notably, Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbors (KNN) exhibited comparatively lower performance. Our study contributes valuable insights into the efficacy of these algorithms, guiding practitioners toward optimal model selection for defect classification scenarios. This research lays a foundation for enhanced decision-making in quality control and predictive maintenance, fostering advancements in the realm of defect prediction and classification

    A review of intelligent methods for condition monitoring and fault diagnosis of stator and rotor faults of induction machines

    Get PDF
    Nowadays, induction motor (IM) is extensively used in industry, including mechanical and electrical applications. However, three main types of IM faults have been discussed in the literature, bearing, stator, and rotor. Importantly, stator and rotor faults represent approximately 50%. Traditional condition monitoring (CM) and fault diagnosis (FD) methods require a high processing cost and much experience knowledge. To tackle this challenge, artificial intelligent (AI) based CM and FD techniques are extensively developed. However, there have been many review research papers for intelligent CM and FD machine learning methods of rolling elements bearings of IM in the literature. Whereas there is a lack in the literature, and there are not many review papers for both stator and rotor intelligent CM and FD. Thus, the proposed study's main contribution is in reviewing the CM and FD of IM, especially for the stator and the rotor, based on AI methods. The paper also provides discussions on the main challenges and possible future works
    corecore