559 research outputs found
Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems
Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions
Peer-to-peer and community-based markets: A comprehensive review
The advent of more proactive consumers, the so-called "prosumers", with
production and storage capabilities, is empowering the consumers and bringing
new opportunities and challenges to the operation of power systems in a market
environment. Recently, a novel proposal for the design and operation of
electricity markets has emerged: these so-called peer-to-peer (P2P) electricity
markets conceptually allow the prosumers to directly share their electrical
energy and investment. Such P2P markets rely on a consumer-centric and
bottom-up perspective by giving the opportunity to consumers to freely choose
the way they are to source their electric energy. A community can also be
formed by prosumers who want to collaborate, or in terms of operational energy
management. This paper contributes with an overview of these new P2P markets
that starts with the motivation, challenges, market designs moving to the
potential future developments in this field, providing recommendations while
considering a test-case
Optimal and Secure Electricity Market Framework for Market Operation of Multi-Microgrid Systems
Traditional power systems were typically based on bulk energy services by large utility companies. However, microgrids and distributed generations have changed the structure of modern power systems as well as electricity markets. Therefore, restructured electricity markets are needed to address energy transactions in modern power systems.
In this dissertation, we developed a hierarchical and decentralized electricity market framework for multi-microgrid systems, which clears energy transactions through three market levels; Day-Ahead-Market (DAM), Hour-Ahead-Market (HAM) and Real-Time-Market (RTM). In this market, energy trades are possible between all participants within the microgrids as well as inter-microgrids transactions. In this approach, we developed a game-theoretic-based double auction mechanism for energy transactions in the DAM, while HAM and RTM are cleared by an optimization algorithm and reverse action mechanism, respectively. For data exchange among market players, we developed a secure data-centric communication approach using the Data Distribution Service. Results demonstrated that this electricity market could significantly reduce the energy price and dependency of the multi-microgrid area on the external grid.
Furthermore, we developed and verified a hierarchical blockchain-based energy transaction framework for a multi-microgrid system. This framework has a unique structure, which makes it possible to check the feasibility of energy transactions from the power system point of view by evaluating transmission system constraints. The blockchain ledger summarization, microgrid equivalent model development, and market players’ security and privacy enhancement are new approaches to this framework.
The research in this dissertation also addresses some ancillary services in power markets such as an optimal power routing in unbalanced microgrids, where we developed a multi-objective optimization model and verified its ability to minimize the power imbalance factor, active power losses and voltage deviation in an unbalanced microgrid.
Moreover, we developed an adaptive real-time congestion management algorithm to mitigate congestions in transmission systems using dynamic thermal ratings of transmission lines. Results indicated that the developed algorithm is cost-effective, fast, and reliable for real-time congestion management cases.
Finally, we completed research about the communication framework and security algorithm for IEC 61850 Routable GOOSE messages and developed an advanced protection scheme as its application in modern power systems
On Sustainable Rural Electrification in Africa: Design of a Self-Sufficient Micro Off-Grid System
Less than 50% of the population in sub-Saharan Africa (SSA) has electricity access. Considering rural areas in SSA, electricity is available only to 16% of the local people. In addition, there are over three and half billion people without access to the Internet globally. The overall percentage of Internet connectivity in SSA is approximately 22%. Therefore, rural electrification and digitalization in developing countries have become a hot topic. To tackle both of them, there is a need to design a smart off-grid concept, which provides electricity, and information and communication technologies (ICT) to provide Internet access and digital services that are run on the system. The application of ICT in the energy sector brings new opportunities and applications to power system control, protection, and energy management. Further, it expands the realm of opportunities for data processing, collection, and exchange. The availability of Big Data concepts enables the integration of machine learning (ML) to the energy sector. There is a wide variety of use cases of ML algorithms applied for different tasks in the field of energy systems, such as prediction, classification, and feature extraction. ML algorithms can also be applied to protection, control, and energy management tasks. For the sake of interoperability and compatibility, ICT within the power sector has to be standardized. IEC-61850 is a communication standard developed for electricity substation automation and expanded to smart grid applications. In the proposed concept, it is used as a feasible alternative to the existing standards used for smart grids. Introduction of ICT to an off-grid system raises cybersecurity challenges that have to be taken into account in the design.
The novelty of the doctoral dissertation is in the concept that provides customers with sustainable electricity, connectivity, and digital services in an affordable manner. The scalability of the system brings flexibility to electrification. The cost optimization of the system is achieved with the introduction of advanced energy management and fault detection control systems. The communication network and cybersecurity tests with real hardware bring a practical dimension to the work
Towards Next Generation Teaching, Learning, and Context-Aware Applications for Higher Education: A Review on Blockchain, IoT, Fog and Edge Computing Enabled Smart Campuses and Universities
[Abstract] Smart campuses and smart universities make use of IT infrastructure that is similar to the one required by smart cities, which take advantage of Internet of Things (IoT) and cloud computing solutions to monitor and actuate on the multiple systems of a university. As a consequence, smart campuses and universities need to provide connectivity to IoT nodes and gateways, and deploy architectures that allow for offering not only a good communications range through the latest wireless and wired technologies, but also reduced energy consumption to maximize IoT node battery life. In addition, such architectures have to consider the use of technologies like blockchain, which are able to deliver accountability, transparency, cyber-security and redundancy to the processes and data managed by a university. This article reviews the state of the start on the application of the latest key technologies for the development of smart campuses and universities. After defining the essential characteristics of a smart campus/university, the latest communications architectures and technologies are detailed and the most relevant smart campus deployments are analyzed. Moreover, the use of blockchain in higher education applications is studied. Therefore, this article provides useful guidelines to the university planners, IoT vendors and developers that will be responsible for creating the next generation of smart campuses and universities.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-
Distributed energy resources and the application of AI, IoT, and blockchain in smart grids
Smart grid (SG), an evolving concept in the modern power infrastructure, enables the two-way flow of electricity and data between the peers within the electricity system networks (ESN) and its clusters. The self-healing capabilities of SG allow the peers to become active partakers in ESN. In general, the SG is intended to replace the fossil fuel-rich conventional grid with the distributed energy resources (DER) and pools numerous existing and emerging know-hows like information and digital communications technologies together to manage countless operations. With this, the SG will able to “detect, react, and pro-act” to changes in usage and address multiple issues, thereby ensuring timely grid operations. However, the “detect, react, and pro-act” features in DER-based SG can only be accomplished at the fullest level with the use of technologies like Artificial Intelligence (AI), the Internet of Things (IoT), and the Blockchain (BC). The techniques associated with AI include fuzzy logic, knowledge-based systems, and neural networks. They have brought advances in controlling DER-based SG. The IoT and BC have also enabled various services like data sensing, data storage, secured, transparent, and traceable digital transactions among ESN peers and its clusters. These promising technologies have gone through fast technological evolution in the past decade, and their applications have increased rapidly in ESN. Hence, this study discusses the SG and applications of AI, IoT, and BC. First, a comprehensive survey of the DER, power electronics components and their control, electric vehicles (EVs) as load components, and communication and cybersecurity issues are carried out. Second, the role played by AI-based analytics, IoT components along with energy internet architecture, and the BC assistance in improving SG services are thoroughly discussed. This study revealed that AI, IoT, and BC provide automated services to peers by monitoring real-time information about the ESN, thereby enhancing reliability, availability, resilience, stability, security, and sustainability
Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts
The climate changes that are visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this book presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on energy internet, blockchain technology, and smart contracts, we hope that they are of interest to readers working in the related fields mentioned above
Demand Response Service Certification and Customer Baseline Evaluation Using Blockchain Technology
Transformative and Disruptive Role of Local Direct Current Power Networks in Power and Transportation Sectors
The power sector is about to undergo a major disruptive transformation. In this paper, we have discussed the best possible energy solution for addressing the challenges of climate change and eradication of energy poverty. This paper focusses on the decentralized power generation, storage and distribution through photovoltaics and lithium batteries. It encompasses the need for local direct current (DC) power through the factors driving this change. The importance of local DC power in the transportation sector is also established. Finally, we conclude with data bolstering our argument towards the paradigm shift in the power network
- …
