22 research outputs found

    Fault Detection in Rotating Machinery: Vibration analysis and numerical modeling

    Get PDF
    This thesis investigates vibration based machine condition monitoring and consists of two parts: bearing fault diagnosis and planetary gearbox modeling. In the first part, a new rolling element bearing diagnosis technique is introduced. Envelope analysis is one of the most advantageous methods for rolling element bearing diagnostics but finding the suitable frequency band for demodulation has been a substantial challenge for a long time. Introduction of the Spectral Kurtosis (SK) and Kurtogram mostly solved this problem but in situations where signal to noise ratio is very low or in presence of non-Gaussian noise these methods will fail. This major drawback may noticeably decrease their effectiveness and goal of this thesis is to overcome this problem. Vibration signals from rolling element bearings exhibit high levels of 2nd order cyclostationarity, especially in the presence of localized faults. A second-order cyclostationary signal is one whose autocovariance function is a periodic function of time: the proposed method, named Autogram by the authors, takes advantage of this property to enhance the conventional Kurtogram. The method computes the kurtosis of the unbiased autocorrelation (AC) of the squared envelope of the demodulated and undecimated signal, rather than the kurtosis of the filtered time signal. Moreover, to take advantage of unique features of the lower and upper portions of the AC, two modified forms of kurtosis are introduced and the resulting colormaps are called Upper and Lower Autogram. In addition, a new thresholding method is also proposed to enhance the quality of the frequency spectrum analysis. Finally, the proposed method is tested on experimental data and compared with literature results so to assess its performances in rolling element bearing diagnostics. Moreover, a second novel method for diagnosis of rolling element bearings is developed. This approach is a generalized version of the cepstrum pre-whitening (CPW) which is a simple and effective technique for bearing diagnosis. The superior performance of the proposed method has been shown on two real case data. For the first case, the method successfully extracts bearing characteristic frequencies related to two defected bearings from the acquired signal. Moreover, the defect frequency was highlighted in case two, even in presence of strong electromagnetic interference (EMI). The second part presents a newly developed lumped parameter model (LPM) of a planetary gear. Planets bearings of planetary gear sets exhibit high rate of failure; detection of these faults which may result in catastrophic breakdowns have always been challenging. Another objective of this thesis is to investigate the planetary gears vibration properties in healthy and faulty conditions. To seek this goal a previously proposed lumped parameter model (LPM) of planetary gear trains is integrated with a more comprehensive bearing model. This modified LPM includes time varying gear mesh and bearing stiffness and also nonlinear bearing stiffness due to the assumption of Hertzian contact between the rollers/balls and races. The proposed model is completely general and accepts any inner/outer race bearing defect location and profile in addition to its original capacity of modelling cracks and spalls of gears; therefore, various combinations of gears and bearing defects are also applicable. The model is exploited to attain the dynamic response of the system in order to identify and analyze localized faults signatures for inner and outer races as well as rolling elements of planets bearings. Moreover, bearing defect frequencies of inner/outer race and ball/roller and also their sidebands are discussed thoroughly. Finally, frequency response of the system for different sizes of planets bearing faults are compared and statistical diagnostic algorithms are tested to investigate faults presence and growth

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    Snapshot Three-Dimensional Surface Imaging With Multispectral Fringe Projection Profilometry

    Get PDF
    Fringe Projection Profilometry (FPP) is a popular method for non-contact optical surface measurements, including motion tracking. The technique derives 3D surface maps from phase maps estimated from the distortions of fringe patterns projected onto the surface of an object. Estimation of phase maps is commonly performed with spatial phase retrieval algorithms that use a series of complex data processing stages. Researchers must have advanced data analysis skills to process FPP data due to a lack of availability of simple research-oriented software tools. Chapter 2 describes a comprehensive FPP software tool called PhaseWareTM that allows novice to experienced users to perform pre-processing of fringe patterns, phase retrieval, phase unwrapping, and finally post-processing. The sequential process of acquiring fringe patterns from an object is necessary to sample the surface densely enough to accurately estimate surface profiles. Sequential fringe acquisition performs poorly if the object is in motion between fringe projections. To overcome this limitation, we developed a novel method of FPP called multispectral fringe projection profilometry (MFPP), where multiple fringe patterns are composited into a multispectral illumination pattern and a single multispectral camera is used to capture the frame. Chapter 3 introduces this new technique and shows how it can be used to perform 3D profilometry at video frame rates. Although the first attempt at MFPP significantly improved acquisition speed, it did not fully satisfy the condition for temporal phase retrieval, which requires at least three phase-shifted fringe patterns to characterize a surface. To overcome this limitation, Chapter 4 introduces an enhanced version of MFPP that utilized a specially designed multispectral illuminator to simultaneously project four p/2 phase-shifted fringe patterns onto an object. Combined with spectrally matched multispectral imaging, the refined MFPP method resulted in complete data for temporal phase retrieval using only a single camera exposure, thereby maintaining the high sampling speed for profilometry of moving objects. In conclusion, MFPP overcomes the limitations of sequential sampling imposed by FPP with temporal phase extraction without sacrificing data quality or accuracy of the reconstructed surface profiles. Since MFPP utilizes no moving parts and is based on MEMS technology, it is applicable to miniaturization for use in mobile devices and may be useful for space-constrained applications such as robotic surgery. Fringe Projection Profilometry (FPP) is a popular method for non-contact optical surface measurements such as motion tracking. The technique derives 3D surface maps from phase maps estimated from the distortions of fringe patterns projected onto the surface of the object. To estimate surface profiles accurately, sequential acquisition of fringe patterns is required; however, sequential fringe projection and acquisition perform poorly if the object is in motion during the projection. To overcome this limitation, we developed a novel method of FPP maned multispectral fringe projection profilometry (MFPP). The proposed method provides multispectral illumination patterns using a multispectral filter array (MFA) to generate multiple fringe patterns from a single illumination and capture the composite pattern using a single multispectral camera. Therefore, a single camera acquisition can provide multiple fringe patterns, and this directly increases the speed of imaging by a factor equal to the number of fringe patterns included in the composite pattern. Chapter 3 introduces this new technique and shows how it can be used to perform 3D profilometry at video frame rates. The first attempt at MFPP significantly improved acquisition speed by a factor of eight by providing eight different fringe patterns in four different directions, which permits the system to detect more morphological details. However, the phase retrieval algorithm used in this method was based on the spatial phase stepping process that had a few limitations, including high sensitive to the quality of the fringe patterns and being a global process, as it spreads the effect of the noisy pixels across the entire result. To overcome this limitation, Chapter 4 introduces an enhanced version of MFPP that utilized a specially designed multispectral illuminator to simultaneously project four p/2 phase-shifted fringe patterns onto an object. Combined with a spectrally matched multispectral camera, the refined MFPP method provided the needed data for the temporal phase retrieval algorithm using only a single camera exposure. Thus, it delivers high accuracy and pixel-wise measurement (thanks to the temporal phase stepping algorithms) while maintaining a high sampling rate for profilometry of moving objects. In conclusion, MFPP overcomes the limitations of sequential sampling imposed by FPP with temporal phase extraction without sacrificing data quality or accuracy of the reconstructed surface profiles. Since MFPP utilizes no moving parts and is based on MEMS technology, it is applicable to miniaturization for use in mobile devices and may be useful for space-constrained applications such as robotic surgery

    A sensitivity comparison of Neuro-fuzzy feature extraction methods from bearing failure signals

    Get PDF
    This thesis presents an account of investigations made into building bearing fault classifiers for outer race faults (ORF), inner race faults (IRF), ball faults (BF) and no fault (NF) cases using wavelet transforms, statistical parameter features and Artificial Neuro-Fuzzy Inference Systems (ANFIS). The test results showed that the ball fault (BF) classifier successfully achieved 100% accuracy without mis-classification, while the outer race fault (ORF), inner race fault (IRF) and no fault (NF) classifiers achieved mixed results

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Advanced techniques for aircraft bearing diagnostics

    Get PDF
    The task is the creation of a method able to diagnose and monitor bearings healthy, mainly in case of varying external conditions. The ability of the technique is verified through data acquisition on a laboratory test rig, where various operating conditions could be checked (load, speed, temperature). Signal processing techniques and data mining techniques are applied to analyse the data

    Study of the cyclostationarity properties of various signals of opportunity

    Get PDF
    Global Navigation Satellite Systems (GNSS) offer precise position estimation and navigation services outdoor but they are rarely accessible in strong multipath environments, such as indoor environments. Fortunately, several Signals of Opportunity (SoO), (such as RFID, Wi-Fi, Bluetooth, digital TV signals, etc.) are readily available in these environments, creating an opportunity for seamless positioning. Performance evolution of positioning can be achieved through contextual exploitation of SoO. The detection and identification of available SoO signals or of the signals which are most relevant to localization and the signal selection in an optimum way, according to designer defined optimality criteria, are important stages to enter such contextual awareness domain. Man-made modulated signals have certain properties which vary periodically in time and this time-varying periodical characteristics trigger what is known as cyclostationarity. Cyclostationarity analysis can be used, among others, as a tool for signal detection. Detected signals through cyclostationary features can be exploited as SoO. The main purpose of this thesis is to study and analyze the cyclostationarity properties of various SoO. An additional goal is to investigate whether such cyclostationarity properties can be used to detect, identify and distinguish the signals which are present in a certain frequency band. The thesis is divided into two parts. In the literature review part, the physical layer study of several signals is given, by emphasizing the potential of SoO in positioning. In the implementation part, the possibility of signals detection through cyclostationary features is investigated through MATLAB simulations. Cyclostationary properties obtained through FFT accumulation Method (FAM) and statistical performance of detection are studied in the presence of stationary additive white Gaussian noise (AWGN). Besides that, the performance in signal detection using cyclostationary-based detector is also compared to the performance with the energy-based detectors, used as benchmarks. The simulated result suggest that cyclostationary features can certainly detect the presence of signals in noise, but simple cases, such as one type of signal only and AWGN noise, are better addressed via traditional energy-based detection. However, cyclostationary features can exhibit advantages in other types of noises and in the presence of signal mixtures which in fact may fulfil one of the preliminary requirements of cognitive positioning

    Reducing Errors in Optical Data Transmission Using Trainable Machine Learning Methods

    Get PDF
    Reducing Bit Error Ratio (BER) and improving performance of modern coherent optical communication system is a significant issue. As the distance travelled by the information signal increases, the bit error ratio will degrade. Machine learning techniques (ML) have been used in applications associated with optical communication systems. The most common machine learning techniques that have been used in applications of optical communication systems are artificial neural networks, Bayesian analysis, and support vector machines (SVMs). This thesis investigates how to improve the bit error ratio in optical data transmission using a trainable machine learning method (ML), that is, a Support Vector Machine (SVM). SVM is a successful machine learning method for pattern recognition, which outperformed the conventional threshold method based on measuring the phase value of each symbol's central sample. In order that the described system can be implemented in hardware, this thesis focuses on applications of SVM with a linear kernel due to the fact that the linear separator is easier to be built in hardware at the desired high speed required of the decoder. In this thesis, using an SVM to reduce the bit error ratio of signals that travel over various distances has been investigated thoroughly. Especially, particular attention has been paid to using the neighbouring information of each symbol being decoded. To further improve the bit error ratio, the wavelet transforms (WT) technique has been employed to reduce the noise of distorted optical signals; however the method did not bring the sort of improvements that the proponents of wavelets led me to believe. It has been found that the most significant improvement of bit error ratio over the current threshold method is to use a number of neighbours on either side of the symbol being decoded. This works much better than using more information from the symbol itself

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior
    corecore