87 research outputs found

    A Calculus of Mobile Resources

    No full text
    We introduce a calculus of Mobile Resources (MR) tailored for the design and analysis of systems containing mobile, possibly nested, computing devices that may have resource and access constraints, and which are not copyable nor modifiable per se. We provide a reduction as well as a labelled transition semantics and prove a correspondence be- tween barbed bisimulation congruence and a higher-order bisimulation. We provide examples of the expressiveness of the calculus, and apply the theory to prove one of its characteristic properties

    A Calculus of Mobility and Communication for Ubiquitous Computing

    Full text link
    We propose a Calculus of Mobility and Communication (CMC) for the modelling of mobility, communication and context-awareness in the setting of ubiquitous computing. CMC is an ambient calculus with the in and out capabilities of Cardelli and Gordon's Mobile Ambients. The calculus has a new form of global communication similar to that in Milner's CCS. In CMC an ambient is tagged with a set of ports that agents executing inside the ambient are allowed to communicate on. It also has a new context-awareness feature that allows ambients to query their location. We present reduction semantics and labelled transition system semantics of CMC and prove that the semantics coincide. A new notion of behavioural equivalence is given by defining capability barbed bisimulation and congruence which is proved to coincide with barbed bisimulation congruence. The expressiveness of the calculus is illustrated by two case studies.Comment: In Proceedings WWV 2015, arXiv:1508.0338

    A Calculus of Bounded Capacities

    No full text
    Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation

    Space-Aware Ambients and Processes

    No full text
    Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation

    Separability in the Ambient Logic

    Get PDF
    The \it{Ambient Logic} (AL) has been proposed for expressing properties of process mobility in the calculus of Mobile Ambients (MA), and as a basis for query languages on semistructured data. We study some basic questions concerning the discriminating power of AL, focusing on the equivalence on processes induced by the logic (=L>)(=_L>). As underlying calculi besides MA we consider a subcalculus in which an image-finiteness condition holds and that we prove to be Turing complete. Synchronous variants of these calculi are studied as well. In these calculi, we provide two operational characterisations of =L_=L: a coinductive one (as a form of bisimilarity) and an inductive one (based on structual properties of processes). After showing =L_=L to be stricly finer than barbed congruence, we establish axiomatisations of =L_=L on the subcalculus of MA (both the asynchronous and the synchronous version), enabling us to relate =L_=L to structural congruence. We also present some (un)decidability results that are related to the above separation properties for AL: the undecidability of =L_=L on MA and its decidability on the subcalculus.Comment: logical methods in computer science, 44 page

    03411 Abstracts Collection -- Language Based Security

    Get PDF
    From October 5th to 10th 2003,the Dagstuhl Seminar 03411 ``Language Based security\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper

    Probabilistic Operational Correspondence

    Get PDF
    Encodings are the main way to compare process calculi. By applying quality criteria to encodings we analyse their quality and rule out trivial or meaningless encodings. Thereby, operational correspondence is one of the most common and most important quality criteria. It ensures that processes and their translations have the same abstract behaviour. We analyse probabilistic versions of operational correspondence to enable such a verification for probabilistic systems. Concretely, we present three versions of probabilistic operational correspondence: weak, middle, and strong. We show the relevance of the weaker version using an encoding from a sublanguage of probabilistic CCS into the probabilistic ?-calculus. Moreover, we map this version of probabilistic operational correspondence onto a probabilistic behavioural relation that directly relates source and target terms. Then we can analyse the quality of the criterion by analysing the relation it induces between a source term and its translation. For the second version of probabilistic operational correspondence we proceed in the opposite direction. We start with a standard simulation relation for probabilistic systems and map it onto a probabilistic operational correspondence criterion

    Verification of Stochastic Process Calculi

    Get PDF
    • 

    corecore