464 research outputs found

    KInNeSS: A Modular Framework for Computational Neuroscience

    Full text link
    Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.Center for Excellence for Learning Education, Science, and Technology (SBE-0354378); Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Event-Driven Technologies for Reactive Motion Planning: Neuromorphic Stereo Vision and Robot Path Planning and Their Application on Parallel Hardware

    Get PDF
    Die Robotik wird immer mehr zu einem SchlĂŒsselfaktor des technischen Aufschwungs. Trotz beeindruckender Fortschritte in den letzten Jahrzehnten, ĂŒbertreffen Gehirne von SĂ€ugetieren in den Bereichen Sehen und Bewegungsplanung noch immer selbst die leistungsfĂ€higsten Maschinen. Industrieroboter sind sehr schnell und prĂ€zise, aber ihre Planungsalgorithmen sind in hochdynamischen Umgebungen, wie sie fĂŒr die Mensch-Roboter-Kollaboration (MRK) erforderlich sind, nicht leistungsfĂ€hig genug. Ohne schnelle und adaptive Bewegungsplanung kann sichere MRK nicht garantiert werden. Neuromorphe Technologien, einschließlich visueller Sensoren und Hardware-Chips, arbeiten asynchron und verarbeiten so raum-zeitliche Informationen sehr effizient. Insbesondere ereignisbasierte visuelle Sensoren sind konventionellen, synchronen Kameras bei vielen Anwendungen bereits ĂŒberlegen. Daher haben ereignisbasierte Methoden ein großes Potenzial, schnellere und energieeffizientere Algorithmen zur Bewegungssteuerung in der MRK zu ermöglichen. In dieser Arbeit wird ein Ansatz zur flexiblen reaktiven Bewegungssteuerung eines Roboterarms vorgestellt. Dabei wird die Exterozeption durch ereignisbasiertes Stereosehen erreicht und die Pfadplanung ist in einer neuronalen ReprĂ€sentation des Konfigurationsraums implementiert. Die Multiview-3D-Rekonstruktion wird durch eine qualitative Analyse in Simulation evaluiert und auf ein Stereo-System ereignisbasierter Kameras ĂŒbertragen. Zur Evaluierung der reaktiven kollisionsfreien Online-Planung wird ein Demonstrator mit einem industriellen Roboter genutzt. Dieser wird auch fĂŒr eine vergleichende Studie zu sample-basierten Planern verwendet. ErgĂ€nzt wird dies durch einen Benchmark von parallelen Hardwarelösungen wozu als Testszenario Bahnplanung in der Robotik gewĂ€hlt wurde. Die Ergebnisse zeigen, dass die vorgeschlagenen neuronalen Lösungen einen effektiven Weg zur Realisierung einer Robotersteuerung fĂŒr dynamische Szenarien darstellen. Diese Arbeit schafft eine Grundlage fĂŒr neuronale Lösungen bei adaptiven Fertigungsprozesse, auch in Zusammenarbeit mit dem Menschen, ohne Einbußen bei Geschwindigkeit und Sicherheit. Damit ebnet sie den Weg fĂŒr die Integration von dem Gehirn nachempfundener Hardware und Algorithmen in die Industrierobotik und MRK

    The Versatile Wayfinder: Prefrontal Contributions to Spatial Navigation

    Get PDF
    Highlights: Navigation is a behavior fundamental to all mobile animals, and incorporates various cognitive functions, including memory, planning, decision-making, and updating models of the world. Historically, the neural underpinnings of flexible navigation have focused on the hippocampal formation, but recent evidence suggests that regions of the prefrontal cortex (PFC) are crucial to many aspects of navigation, especially when environments are complex or dynamic. This review summarizes what we know from recent human, non-human primate, and rodent studies, proposing a novel perspective that incorporates our knowledge across species and brain regions seeking to avoid tunnel vision in understanding the multifaceted behavior in navigation

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Scale-Free Navigational Planning by Neuronal Traveling Waves

    Get PDF
    Spatial navigation and planning is assumed to involve a cognitive map for evaluating trajectories towards a goal. How such a map is realized in neuronal terms, however, remains elusive. Here we describe a simple and noise-robust neuronal implementation of a path finding algorithm in complex environments. We consider a neuronal map of the environment that supports a traveling wave spreading out from the goal location opposite to direction of the physical movement. At each position of the map, the smallest firing phase between adjacent neurons indicate the shortest direction towards the goal. In contrast to diffusion or single-wave-fronts, local phase differences build up in time at arbitrary distances from the goal, providing a minimal and robust directional information throughout the map. The time needed to reach the steady state represents an estimate of an agent's waiting time before it heads off to the goal. Given typical waiting times we estimate the minimal number of neurons involved in the cognitive map. In the context of the planning model, forward and backward spread of neuronal activity, oscillatory waves, and phase precession get a functional interpretation, allowing for speculations about the biological counterpart

    Extensions of sampling-based approaches to path planning in complex cost spaces: applications to robotics and structural biology

    Get PDF
    Planifier le chemin d’un robot dans un environnement complexe est un problĂšme crucial en robotique. Les mĂ©thodes de planification probabilistes peuvent rĂ©soudre des problĂšmes complexes aussi bien en robotique, qu’en animation graphique, ou en biologie structurale. En gĂ©nĂ©ral, ces mĂ©thodes produisent un chemin Ă©vitant les collisions, sans considĂ©rer sa qualitĂ©. RĂ©cemment, de nouvelles approches ont Ă©tĂ© crĂ©Ă©es pour gĂ©nĂ©rer des chemins de bonne qualitĂ© : en robotique, cela peut ĂȘtre le chemin le plus court ou qui maximise la sĂ©curitĂ© ; en biologie, il s’agit du mouvement minimisant la variation Ă©nergĂ©tique molĂ©culaire. Dans cette thĂšse, nous proposons plusieurs extensions de ces mĂ©thodes, pour amĂ©liorer leurs performances et leur permettre de rĂ©soudre des problĂšmes toujours plus difficiles. Les applications que nous prĂ©sentons viennent de la robotique (inspection industrielle et manipulation aĂ©rienne) et de la biologie structurale (mouvement molĂ©culaire et conformations stables). ABSTRACT : Planning a path for a robot in a complex environment is a crucial issue in robotics. So-called probabilistic algorithms for path planning are very successful at solving difficult problems and are applied in various domains, such as aerospace, computer animation, and structural biology. However, these methods have traditionally focused on finding paths avoiding collisions, without considering the quality of these paths. In recent years, new approaches have been developed to generate high-quality paths: in robotics, this can mean finding paths maximizing safety or control; in biology, this means finding motions minimizing the energy variation of a molecule. In this thesis, we propose several extensions of these methods to improve their performance and allow them to solve ever more difficult problems. The applications we present stem from robotics (industrial inspection and aerial manipulation) and structural biology (simulation of molecular motions and exploration of energy landscapes)

    Extensions of sampling-based approaches to path planning in complex cost spaces: applications to robotics and structural biology

    Get PDF
    Planning a path for a robot in a complex environment is a crucial issue in robotics. So-called probabilistic algorithms for path planning are very successful at solving difficult problems and are applied in various domains, such as aerospace, computer animation, and structural biology. However, these methods have traditionally focused on finding paths avoiding collisions, without considering the quality of these paths. In recent years, new approaches have been developed to generate high-quality paths: in robotics, this can mean finding paths maximizing safety or control; in biology, this means finding motions minimizing the energy variation of a molecule. In this thesis, we propose several extensions of these methods to improve their performance and allow them to solve ever more difficult problems. The applications we present stem from robotics (industrial inspection and aerial manipulation) and structural biology (simulation of molecular motions and exploration of energy landscapes)

    A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    Full text link
    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discotinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and VIP can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.Air Force Office of Scientific Research (F4960-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (NSF SBE-0354378); Office of Naval Research (N00014-01-1-0624
    • 

    corecore