39 research outputs found

    Influence of material and haptic design on the mechanical stability of intraocular lenses by means of finite-element modeling

    Get PDF
    Intraocular lenses (IOLs) are used in the cataract treatment for surgical replacement of the opacified crystalline lens. Before being implanted they have to pass the strict quality control to guarantee a good biomechanical stability inside the capsular bag, avoiding the rotation, and to provide a good optical quality. The goal of this study was to investigate the influence of the material and haptic design on the behavior of the IOLs under dynamic compression condition. For this purpose, the strain-stress characteristics of the hydrophobic and hydrophilic materials were estimated experimentally. Next, these data were used as the input for a finite-element model (FEM) to analyze the stability of different IOL haptic designs, according to the procedure described by the ISO standards. Finally, the simulations of the effect of IOL tilt and decentration on the optical performance were performed in an eye model using a ray-tracing software. The results suggest the major importance of the haptic design rather than the material on the postoperative behavior of an IOL. FEM appears to be a powerful tool for numerical studies of the biomechanical properties of IOLs and it allows one to help in the design phase to the manufacturers

    A Numerical Exploration of the Crystalline Lens: from Presbyopia to Cataracts and Intraocular Lenses

    Get PDF
    Esta tesis aborda, de forma numérica, la resolución de tres problemas relacionados con el cristalino. En primer lugar, se ha construido un modelo de elementos finitos del cristalino humano para abordar la simulación de la acomodación, gracias a la incorporación de la contracción muscular del músculo ciliar. El modelo se ha validado con resultados experimentales comparando con Ramasubramanian & Glasser, 2015. Con el mismo modelo, se ha estudiado como afecta el cambio de las propiedades mecánicas de los tejidos del cristalino en la pérdida de amplitud de la acomodación con la edad para entender si la rigidización de los tejidos juega un papel importante en la presbicia. La conclusión principal del estudio numérico ha sido que las propiedades mecánicas y tensiones iniciales de la cápsula del cristalino proporciona la fuerza necesaria para acomodar, es decir, cambiar su curvatura para enfocar de cerca. Especificamente, el ratio de rígidez entre el núcleo y el cristalino gobierna cómo el cristalino cambia de forma. Con la edad, se produce una rigidización del núcleo, y el incremento de la relación entre ambas rigideces (núcleo y corteza) podría ser el principal responsable de la pérdida de la amplitud de acomodación con la edad. En segundo lugar, se ha estudiado la estabilidad biomecánica de diferentes diseños de lentes intraoculares (IOL). Las IOLs sustituyen las funciones del cristalino en pacientes con cataratas, es por ello necesario garantizar su estabilidad en el interior del saco para garantizar una visión adecuada. Entre los aspectos estudiados destaca la caracterización mecánica de los materiales acrílicos con los que se fabrican las lentes. Para ello, se han combinado ensayos uniaxiales con ensayos de indentación. Éstos últimos se han utilizado para caracterizar la respuesta visco-elástica del material. El definir la respuesta del material mediante modelos visco hiperelásticos es necesario para posteriormente analizar la estabilidad de la IOL mediante elementos finitos. Este análisis se ha defino a dos niveles, en un primer nivel se analiza la estabilidad de la IOL simulando el ensayo establecido en la norma ISO 11979-3:2012. Esta norma es de obligado cumplimiento para los fabricantes antes de introducir un nuevo diseño en el mercado. Se ha realizado un estudio estadístico para estudiar el efecto de la geometría de los hápticos tipo C-loop en la estabilidad mecánica de la IOL, obteniendo que el entronque, la unión entre el háptico y la lente, es el parámetro más influyente. Para validar la metodología numérica, se fabricaron varios diseños y se analizaron experimentalmente para comparar los resultados correspondientes con biomarcadores mecánicos (desplazamiento axial, rotación y la inclinación de la IOL) que están relacionados con la calidad visual resultante de la IOL. En un segundo nivel, se ha simulado la respuesta de la IOL en el interior del saco capsular, estudiando la influencia de diferentes parámetros del paciente, como geometría y propiedades mecánicas del saco. También se ha analizado la influencia de parámetros de la cirugía de la catarata, como es el diámetro y posición de la capsulorexis. En este último nivel, se ha estudiado tanto la respuesta instantánea, es decir, tras la cirugía, como a largo plazo, cuando sucede la huella de fusión (fusion footprint) entre la cápsula y la IOL. Para que los modelos computacionales sean de ayuda a los cirujanos o puedan servir en tiempo real, se ha planteado una metodología basada en inteligencia artificial. En este caso la base de datos de partida corresponde a modelos numéricos altamente fiables y con ellos, se genera datos con los que se entrena la red neuronal. En esta tesis, se estudia la estabilidad de la IOL en función del diámetro de compresión del paciente y la edad, que a su vez influye en las propiedades mecánicas del saco. Por último, se ha evaluado experimentalmente la influencia del material de la IOL (hidrófobo o hidrofílico) y su geometría durante la inyección de la IOL en el saco, registrando la fuerza de inyección que debe realizar el cirujano. De cara a evitar complicaciones (se dañe la IOL o el tejido corneal) durante la cirugía, es conveniente que la fuerza a ejercer sea baja. Se ha comprobado que su valor está fuertemente influenciado por el material de la lente.¿Por qué el cristalino es de vital importancia?El cristalino es el responsable tanto del cambio dinámico de la potencia refractiva del ojo a través del mecanismo de acomodación como de la corrección de las aberraciones de la córnea. El cambio óptico dinámico es consecuencia de un cambio geométrico del cristalino. Sin embargo, a medida que el cristalino envejece, disminuye este cambio óptico dinámico y se opacifica, lo que da lugar a las dos patologías comúnmente asociadas al envejecimiento como es, la presbicia y las cataratas. Por este motivo, en esta tesis doctoral se ha profundizado en el estudio mecánico del cristalino y tras su sustitución mediante una lente intraocular artificial durante la cirugía de catarata. La metodología establecida pueden ayudar en un futuro tanto al diseño de nuevos implantes como a los oftalmólogos a seleccionar la IOL adecuada a cada paciente para mejora su calidad visual.This thesis addresses three different case studies related to the crystalline lens. Firstly, the mechanical causes of the loss of accommodation amplitude with age, called presbyopia, were analysed through the finite element method. A high-fidelity simulation of the mechanism of accommodation including the contraction of the ciliary muscle was developed. This allowed us to analyse accommodation in depth, showing that although the lens capsule provides the force to accommodate, the stiffness ratio between the lens cortex and lens nucleus could have a higher effect on how the lens changes its shape. Secondly, the biomechanical stability of intraocular lenses (IOLs) was analysed. IOLs are essential for post-cataract patients as they substitute the functions of the crystalline lens. In this thesis, a wide variety of solutions were addressed: from the visco- and hyper-elasticity characterisation of IOL acrylic materials from depth sensing indentation and uniaxial tests to the simulation of the IOL biomechanical stability inside the capsular bag. We also performed a high-fidelity simulation of the IOL compression standards tests required by the IOLs to be commercialised and the results obtained were compared with clinical data. Lastly, we developed a patient-specific methodology to customise the IOL haptic design. Most of the numerical methology developed is intended to be used in the IOL pre-design phase to avoid costs and time. Thirdly, the IOL delivery during cataract surgery according to haptic and material design and injector characteristics was experimentally studied to avoid any possibility of IOL and eye damage. Apart from the injector size, the IOL material was the most influential parameter in the force exerted in IOL delivery. Why is the crystalline lens of vital importance? The crystalline lens is the responsible for both the dynamic change of the refractive power of the eye through the mechanism of accommodation and the correction of cornea aberrations. The dynamic optical change is consequence of change of the lens shape. However, as the lens ages over time, it decreases this dynamic optical change and becomes cloudy, what leads to the two most common lens-related pathologies, presbyopia and cataracts. Therefore, it is of utmost importance to study the lens mechanics and all issues related to the artificial intraocular lens that substitutes the lens during cataract surgery.<br /

    A haptic training environment for the heart myoblast cell injection procedure

    Full text link
    The heart muscle of a cardiac arrest victim continues to accumulate damage throughout its lifetime. This reduces the heart\u27s ability to pump sufficient oxygen and nutrient blood to meet the body\u27s needs. Medical researchers have shown that direct injection of pre-harvested skeletal myoblast cells into the heart can restore some muscle function [1]. This operative procedure usually necessitates the surgeon to open a patient\u27s chest. The open chest procedure is usually a lengthy process and often extends the recovery time of the patient. Alternatively, a high accuracy surgical aid robotic system can be used to assist the thoracoscopic surgery [2][3]. While the robotic surgical method aids faster patient recovery, a less experienced surgeon can potentially cause damage to surrounding tissue. This paper presents a study into the development of a virtual haptically-enabled heart myoblast injection simulation environment, which can be used to train new surgeons to get hands on experience with the process. The paper also discusses the development of a generic constraint motion technique for needle insertion. Experiments on human performance measures and efficacy, while interacting with haptic feedback training models, are also presented. The experiment involved 10 operators, with each person repeating the needle insertion and injection 10 times. A notable improvement in the task execution time with the number of repetitions was observed. Operators improved their time by up to 300% compared to their first training attempt for a static heart scenario. Under a dynamic heart motion, operator\u27s performance was slightly lower, with the successful rate of completing the experiment reduced from 84% to 75%

    Hand-Injectable Acrylic Bone Cement Applicator for Skull Base Bone Replacement

    Full text link
    One of the only existing procedures to remove brain tumors at the skull base is endoscopic endonasal neurosurgery. The most difficult part of this surgery is closing the hole created in the skull, which currently is solved by stuffing fat and biocompatible foam in the hole and sealing it with glue. A better way of sealing this hole would be to use poly methyl methacrylate (PMMA) so that the hole is replaced with a material which more closely resembles bone. In order to better understand the delivery and application of PMMA bone cement into a patient?s skull through the nasal passages by a surgeon, we modeled three-dimensional viscous fluid flow within a surgical device prototype. The model is comprised of a 5-mm diameter tube with a 1-mm diameter wire running through its center. This wire is secured in place with vertical and horizontal supports. We analyzed the effects of the supports and wire on velocity and pressure drop of PMMA material moving through the tube to see if there was any resistance created in the tube that would be unmanageable by an unaided surgeon. To model the fluid flow, we created a three dimensional geometric schematic of the device in COMSOL. We acquired material properties from related literature and ran multiple simulations with several mesh sizes with COMSOL using the 3-D incompressible Navier-Stokes steady state application mode. The overall goal of this project was to determine if a surgeon could push PMMA through the tube without assistance from machines. Using this model we could then determine the manual pressure needed to administer the PMMA into a patient?s skull at an appropriate velocity. Our results indicated that the amount of applied pressure required would be 1.7 lbf, which is much less than the minimal value (~17 lbf) found in the literature regarding thumb strength. From simulations we obtained multiple velocity profiles and plots of pressure drop. Pressure decreases at a constant rate until the tube bends, the wire is introduced, or fluid passes by an obstruction at each point drop in pressure increases. The total amount of pressure drop in the tube was found to be 380 kPa. As we increased inlet velocity, the required applied pressure increased significantly, but not to a magnitude that would be unbearable to a human thumb. The model also gives valuable insight on the effects of obstructions on continuous, viscous fluid flow in a narrow tube

    A Particle Model for Prediction of Cement Infiltration of Cancellous Bone in Osteoporotic Bone Augmentation.

    Get PDF
    PMC3693961Femoroplasty is a potential preventive treatment for osteoporotic hip fractures. It involves augmenting mechanical properties of the femur by injecting Polymethylmethacrylate (PMMA) bone cement. To reduce the risks involved and maximize the outcome, however, the procedure needs to be carefully planned and executed. An important part of the planning system is predicting infiltration of cement into the porous medium of cancellous bone. We used the method of Smoothed Particle Hydrodynamics (SPH) to model the flow of PMMA inside porous media. We modified the standard formulation of SPH to incorporate the extreme viscosities associated with bone cement. Darcy creeping flow of fluids through isotropic porous media was simulated and the results were compared with those reported in the literature. Further validation involved injecting PMMA cement inside porous foam blocks - osteoporotic cancellous bone surrogates - and simulating the injections using our proposed SPH model. Millimeter accuracy was obtained in comparing the simulated and actual cement shapes. Also, strong correlations were found between the simulated and the experimental data of spreading distance (R2 = 0.86) and normalized pressure (R2 = 0.90). Results suggest that the proposed model is suitable for use in an osteoporotic femoral augmentation planning framework.JH Libraries Open Access Fun

    Intraocular Lens

    Get PDF
    The first clinical application of intraocular lens (IOL) goes back to 1949 when Dr. Harold Ridley successfully implanted a PMMA IOL into an eye on 29 November 1949. This innovation is a big step forward for cataract surgery. With development of the IOL material and biocompatibility, more and more IOL types have been used in clinical ophthalmology. This book is the fruit of worldwide cooperation between clinical teams. In this book we discuss the IOL materials and design, aberration and astigmatism correction with IOL, entopic phenomenon of IOL, myopia and phakic IOL, and secondary IOL techniques. We believe that this content provides the readers with a comprehensive knowledge of the latest developments of IOL

    Ex-vivo and In-vivo Characterization of Human Accommodation

    Get PDF
    A completely satisfying approach to restoring accommodation still needs to be developed. Besides, there are considerable discrepancies between objective and subjective trials to evaluate the therapeutic success. A substantial biomechanical understanding of all structures and processes involved in accommodation as well as presbyopia are needed to develop promising new strategies. This contribution focuses on developing advanced imaging techniques to create a basic understanding of accommodation and presbyopia and to evaluate existing concepts for restoring accommodation. Besides, the emphasis is also on replacing stiff presbyopic lenses by a material that imitates the young crystalline lens

    Novel methodology for assessing cement injection behaviour in cancellous bone

    Get PDF
    Understanding the cement injection behaviour in cancellous bone and accurately predicting the cement placement within the vertebral body is extremely challenging. We propose a novel method using reproducible and pathologically representative 2D and 3D bone surrogates to help study the influence of cement properties on injection behaviour. Bespoke methodology was developed to control the injection volume and flow rate, measure the injection pressure, and allow visualization and quantitative analysis of the spreading distribution. Morphology analysis showed that the variability in the 2D and 3D bone surrogates was very low, indicating that the geometrical structure of the surrogates was constant. The overall pore size of the surrogates was very similar to that reported for human osteoporotic vertebral cancellous bone, indicating that the surrogates were pathologically representative. Injections performed into the 3D surrogates revealed that an increase in the fluid starting viscosity significantly increases the injection pressure in all surrogates, decreases the risk of leakage for osteoporosis surrogates only, decreases the mean spreading distance for multiple myeloma surrogates only and increases the sphericity causing a more uniform spreading pattern for the metastasis surrogates only. Injections performed into the 2D surrogates highlighted the influence of cement formulations and model structure on the injection behaviour and showed that (i) cements with similar composition/particle size have similar flow behaviour, (ii) cements with a high liquid-to-powder ratio cause irregular filling patterns and have a high risk of leakage, and (iii) the injection behaviour of certain cement formulations improves in the presence of lesion or fracture, suggesting the notion of pathology specific bone cements. The developed methodology provides a fast, robust tool for discerning subtle differences in bone cement formulations and allows comprehensive assessment of cement flow behaviour through controlling the surrogate morphology, controlling the injection parameters, measuring the injection pressure, and allowing the visualization and quantitative analysis of the spreading distribution. The advantage of this methodology is that it provides a clinically relevant representation of cement flow patterns and a tool for validating computational simulations

    FAST PHYSICS-BASED SIMULATION OF VASCULAR SURGERY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore