310 research outputs found

    Biologically Plausible Connectionist Prediction of Natural Language Thematic Relations

    Get PDF
    In Natural Language Processing (NLP) symbolic systems, several linguistic phenomena, for instance, the thematic role relationships between sentence constituents, such as AGENT, PATIENT, and LOCATION, can be accounted for by the employment of a rule-based grammar. Another approach to NLP concerns the use of the connectionist model, which has the benefits of learning, generalization and fault tolerance, among others. A third option merges the two previous approaches into a hybrid one: a symbolic thematic theory is used to supply the connectionist network with initial knowledge. Inspired on neuroscience, it is proposed a symbolic-connectionist hybrid system called BIO theta PRED (BIOlogically plausible thematic (theta) symbolic-connectionist PREDictor), designed to reveal the thematic grid assigned to a sentence. Its connectionist architecture comprises, as input, a featural representation of the words (based on the verb/noun WordNet classification and on the classical semantic microfeature representation), and, as output, the thematic grid assigned to the sentence. BIO theta PRED is designed to ""predict"" thematic (semantic) roles assigned to words in a sentence context, employing biologically inspired training algorithm and architecture, and adopting a psycholinguistic view of thematic theory.Fapesp - Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, Brazil[2008/08245-4

    Biological and Cognitive Plausibility in Connectionist Networks for Language Modeling

    Get PDF
    If we want to explain cognitive processes with means of connectionist networks, these networks have to correspond with cognitive systems and their underlying biological mechanisms in different respects. The question of biological and cognitive plausibility of connectionist models arises from two different aspects – first, from the aspect of biology – on one hand, one has to have a fair understanding of biological mechanisms and cognitive mechanisms in order to represent them in a model, and on the other hand there is the aspect of modeling – one has to know how to construct a model to represent precisely what we are aiming at. Computer power and modeling techniques have improved dramatically in recent 20 years, so the plausibility problem is being addressed in more adequate ways as well. Connectionist models are often used for representing different aspects of natural language. Their biological plausibility had sometimes been questioned in the past. Today, the field of computational neuroscience offers several acceptable possibilities of modeling higher cognitive functions, and language is among them. This paper brings a presentation of some existing connectionist networks modeling natural language. The question of their explanatory power and plausibility in terms of biological and cognitive systems they are representing is discussed

    Biologically Plausible Artificial Neural Networks

    Get PDF

    The Grand Challenges and Myths of Neural-Symbolic Computation

    Get PDF
    The construction of computational cognitive models integrating the connectionist and symbolic paradigms of artificial intelligence is a standing research issue in the field. The combination of logic-based inference and connectionist learning systems may lead to the construction of semantically sound computational cognitive models in artificial intelligence, computer and cognitive sciences. Over the last decades, results regarding the computation and learning of classical reasoning within neural networks have been promising. Nonetheless, there still remains much do be done. Artificial intelligence, cognitive and computer science are strongly based on several non-classical reasoning formalisms, methodologies and logics. In knowledge representation, distributed systems, hardware design, theorem proving, systems specification and verification classical and non-classical logics have had a great impact on theory and real-world applications. Several challenges for neural-symbolic computation are pointed out, in particular for classical and non-classical computation in connectionist systems. We also analyse myths about neural-symbolic computation and shed new light on them considering recent research advances

    Information Processing, Computation and Cognition

    Get PDF
    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In this paper, we address this unsatisfactory state of affairs by presenting a general and theory-neutral account of computation and information processing. We also apply our framework by analyzing the relations between computation and information processing on one hand and classicism and connectionism/computational neuroscience on the other. We defend the relevance to cognitive science of both computation, at least in a generic sense, and information processing, in three important senses of the term. Our account advances several foundational debates in cognitive science by untangling some of their conceptual knots in a theory-neutral way. By leveling the playing field, we pave the way for the future resolution of the debates’ empirical aspects

    A Defense of Pure Connectionism

    Full text link
    Connectionism is an approach to neural-networks-based cognitive modeling that encompasses the recent deep learning movement in artificial intelligence. It came of age in the 1980s, with its roots in cybernetics and earlier attempts to model the brain as a system of simple parallel processors. Connectionist models center on statistical inference within neural networks with empirically learnable parameters, which can be represented as graphical models. More recent approaches focus on learning and inference within hierarchical generative models. Contra influential and ongoing critiques, I argue in this dissertation that the connectionist approach to cognitive science possesses in principle (and, as is becoming increasingly clear, in practice) the resources to model even the most rich and distinctly human cognitive capacities, such as abstract, conceptual thought and natural language comprehension and production. Consonant with much previous philosophical work on connectionism, I argue that a core principle—that proximal representations in a vector space have similar semantic values—is the key to a successful connectionist account of the systematicity and productivity of thought, language, and other core cognitive phenomena. My work here differs from preceding work in philosophy in several respects: (1) I compare a wide variety of connectionist responses to the systematicity challenge and isolate two main strands that are both historically important and reflected in ongoing work today: (a) vector symbolic architectures and (b) (compositional) vector space semantic models; (2) I consider very recent applications of these approaches, including their deployment on large-scale machine learning tasks such as machine translation; (3) I argue, again on the basis mostly of recent developments, for a continuity in representation and processing across natural language, image processing and other domains; (4) I explicitly link broad, abstract features of connectionist representation to recent proposals in cognitive science similar in spirit, such as hierarchical Bayesian and free energy minimization approaches, and offer a single rebuttal of criticisms of these related paradigms; (5) I critique recent alternative proposals that argue for a hybrid Classical (i.e. serial symbolic)/statistical model of mind; (6) I argue that defending the most plausible form of a connectionist cognitive architecture requires rethinking certain distinctions that have figured prominently in the history of the philosophy of mind and language, such as that between word- and phrase-level semantic content, and between inference and association

    Reinforcing connectionism: learning the statistical way

    Get PDF
    Connectionism's main contribution to cognitive science will prove to be the renewed impetus it has imparted to learning. Learning can be integrated into the existing theoretical foundations of the subject, and the combination, statistical computational theories, provide a framework within which many connectionist mathematical mechanisms naturally fit. Examples from supervised and reinforcement learning demonstrate this. Statistical computational theories already exist for certainn associative matrix memories. This work is extended, allowing real valued synapses and arbitrarily biased inputs. It shows that a covariance learning rule optimises the signal/noise ratio, a measure of the potential quality of the memory, and quantifies the performance penalty incurred by other rules. In particular two that have been suggested as occuring naturally are shown to be asymptotically optimal in the limit of sparse coding. The mathematical model is justified in comparison with other treatments whose results differ. Reinforcement comparison is a way of hastening the learning of reinforcement learning systems in statistical environments. Previous theoretical analysis has not distinguished between different comparison terms, even though empirically, a covariance rule has been shown to be better than just a constant one. The workings of reinforcement comparison are investigated by a second order analysis of the expected statistical performance of learning, and an alternative rule is proposed and empirically justified. The existing proof that temporal difference prediction learning converges in the mean is extended from a special case involving adjacent time steps to the general case involving arbitary ones. The interaction between the statistical mechanism of temporal difference and the linear representation is particularly stark. The performance of the method given a linearly dependent representation is also analysed

    The External Tape Hypothesis: a Turing machine based approach to cognitive computation

    Get PDF
    The symbol processing or "classical cognitivist" approach to mental computation suggests that the cognitive architecture operates rather like a digital computer. The components of the architecture are input, output and central systems. The input and output systems communicate with both the internal and external environments of the cognizer and transmit codes to and from the rule governed, central processing system which operates on structured representational expressions in the internal environment. The connectionist approach, by contrast, suggests that the cognitive architecture should be thought of as a network of interconnected neuron-like processing elements (nodes) which operates rather like a brain. Connectionism distinguishes input, output and central or "hidden" layers of nodes. Connectionists claim that internal processing consists not of the rule governed manipulation of structured symbolic expressions, but of the excitation and inhibition of activity and the alteration of connection strengths via message passing within and between layers of nodes in the network. A central claim of the thesis is that neither symbol processing nor connectionism provides an adequate characterization of the role of the external environment in cognitive computation. An alternative approach, called the External Tape Hypothesis (ETH), is developed which claims, on the basis of Turing's analysis of routine computation, that the Turing machine model can be used as the basis for a theory which includes the environment as an essential part of the cognitive architecture. The environment is thought of as the tape, and the brain as the control of a Turing machine. Finite state automata, Turing machines, and universal Turing machines are described, including details of Turing's original universal machine construction. A short account of relevant aspects of the history of digital computation is followed by a critique of the symbol processing approach as it is construed by influential proponents such as Allen Newell and Zenon Pylyshyn among others. The External Tape Hypothesis is then developed as an alternative theoretical basis. In the final chapter, the ETH is combined with the notion of a self-describing Turing machine to provide the basis for an account of thinking and the development of internal representations

    Practical recommendations for gradient-based training of deep architectures

    Full text link
    Learning algorithms related to artificial neural networks and in particular for Deep Learning may seem to involve many bells and whistles, called hyper-parameters. This chapter is meant as a practical guide with recommendations for some of the most commonly used hyper-parameters, in particular in the context of learning algorithms based on back-propagated gradient and gradient-based optimization. It also discusses how to deal with the fact that more interesting results can be obtained when allowing one to adjust many hyper-parameters. Overall, it describes elements of the practice used to successfully and efficiently train and debug large-scale and often deep multi-layer neural networks. It closes with open questions about the training difficulties observed with deeper architectures
    • 

    corecore