173 research outputs found

    A bio-inspired bistable recurrent cell allows for long-lasting memory

    Full text link
    Recurrent neural networks (RNNs) provide state-of-the-art performances in a wide variety of tasks that require memory. These performances can often be achieved thanks to gated recurrent cells such as gated recurrent units (GRU) and long short-term memory (LSTM). Standard gated cells share a layer internal state to store information at the network level, and long term memory is shaped by network-wide recurrent connection weights. Biological neurons on the other hand are capable of holding information at the cellular level for an arbitrary long amount of time through a process called bistability. Through bistability, cells can stabilize to different stable states depending on their own past state and inputs, which permits the durable storing of past information in neuron state. In this work, we take inspiration from biological neuron bistability to embed RNNs with long-lasting memory at the cellular level. This leads to the introduction of a new bistable biologically-inspired recurrent cell that is shown to strongly improves RNN performance on time-series which require very long memory, despite using only cellular connections (all recurrent connections are from neurons to themselves, i.e. a neuron state is not influenced by the state of other neurons). Furthermore, equipping this cell with recurrent neuromodulation permits to link them to standard GRU cells, taking a step towards the biological plausibility of GRU

    Spike-based computation using classical recurrent neural networks

    Full text link
    Spiking neural networks are a type of artificial neural networks in which communication between neurons is only made of events, also called spikes. This property allows neural networks to make asynchronous and sparse computations and therefore to drastically decrease energy consumption when run on specialized hardware. However, training such networks is known to be difficult, mainly due to the non-differentiability of the spike activation, which prevents the use of classical backpropagation. This is because state-of-the-art spiking neural networks are usually derived from biologically-inspired neuron models, to which are applied machine learning methods for training. Nowadays, research about spiking neural networks focuses on the design of training algorithms whose goal is to obtain networks that compete with their non-spiking version on specific tasks. In this paper, we attempt the symmetrical approach: we modify the dynamics of a well-known, easily trainable type of recurrent neural network to make it event-based. This new RNN cell, called the Spiking Recurrent Cell, therefore communicates using events, i.e. spikes, while being completely differentiable. Vanilla backpropagation can thus be used to train any network made of such RNN cell. We show that this new network can achieve performance comparable to other types of spiking networks in the MNIST benchmark and its variants, the Fashion-MNIST and the Neuromorphic-MNIST. Moreover, we show that this new cell makes the training of deep spiking networks achievable.Comment: 12 pages, 3 figure

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Spike-based computation using classical recurrent neural networks

    Full text link
    Spiking neural networks are a type of artificial neural networks in which communication between neurons is only made of events, also called spikes. This property allows neural networks to make asynchronous and sparse computations and therefore to drastically decrease energy consumption when run on specialized hardware. However, training such networks is known to be difficult, mainly due to the non-differentiability of the spike activation, which prevents the use of classical backpropagation. This is because state-of-the-art spiking neural networks are usually derived from biologically-inspired neuron models, to which are applied machine learning methods for training. Nowadays, research about spiking neural networks focuses on the design of training algorithms whose goal is to obtain networks that compete with their non-spiking version on specific tasks. In this paper, we attempt the symmetrical approach: we modify the dynamics of a well-known, easily trainable type of recurrent neural network to make it event-based. This new RNN cell, called the Spiking Recurrent Cell, therefore communicates using events, i.e. spikes, while being completely differentiable. Vanilla backpropagation can thus be used to train any network made of such RNN cell. We show that this new network can achieve performance comparable to other types of spiking networks in the MNIST benchmark and its variants, the Fashion-MNIST and the Neuromorphic-MNIST. Moreover, we show that this new cell makes the training of deep spiking networks achievable

    Mechanisms of Induction and Maintenance of Spike-Timing Dependent Plasticity in Biophysical Synapse Models

    Get PDF
    We review biophysical models of synaptic plasticity, with a focus on spike-timing dependent plasticity (STDP). The common property of the discussed models is that synaptic changes depend on the dynamics of the intracellular calcium concentration, which itself depends on pre- and postsynaptic activity. We start by discussing simple models in which plasticity changes are based directly on calcium amplitude and dynamics. We then consider models in which dynamic intracellular signaling cascades form the link between the calcium dynamics and the plasticity changes. Both mechanisms of induction of STDP (through the ability of pre/postsynaptic spikes to evoke changes in the state of the synapse) and of maintenance of the evoked changes (through bistability) are discussed

    Six networks on a universal neuromorphic computing substrate

    Get PDF
    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality

    Behavioural robustness and the distributed mechanisms hypothesis

    Get PDF
    A current challenge in neuroscience and systems biology is to better understand properties that allow organisms to exhibit and sustain appropriate behaviours despite the effects of perturbations (behavioural robustness). There are still significant theoretical difficulties in this endeavour, mainly due to the context-dependent nature of the problem. Biological robustness, in general, is considered in the literature as a property that emerges from the internal structure of organisms, rather than being a dynamical phenomenon involving agent-internal controls, the organism body, and the environment. Our hypothesis is that the capacity for behavioural robustness is rooted in dynamical processes that are distributed between agent ‘brain’, body, and environment, rather than warranted exclusively by organisms’ internal mechanisms. Distribution is operationally defined here based on perturbation analyses. Evolutionary Robotics (ER) techniques are used here to construct four computational models to study behavioural robustness from a systemic perspective. Dynamical systems theory provides the conceptual framework for these investigations. The first model evolves situated agents in a goalseeking scenario in the presence of neural noise perturbations. Results suggest that evolution implicitly selects neural systems that are noise-resistant during coupling behaviour by concentrating search in regions of the fitness landscape that retain functionality for goal approaching. The second model evolves situated, dynamically limited agents exhibiting minimalcognitive behaviour (categorization task). Results indicate a small but significant tendency toward better performance under most types of perturbations by agents showing further cognitivebehavioural dependency on their environments. The third model evolves experience-dependent robust behaviour in embodied, one-legged walking agents. Evidence suggests that robustness is rooted in both internal and external dynamics, but robust motion emerges always from the systemin-coupling. The fourth model implements a historically dependent, mobile-object tracking task under sensorimotor perturbations. Results indicate two different modes of distribution, one in which inner controls necessarily depend on a set of specific environmental factors to exhibit behaviour, then these controls will be more vulnerable to perturbations on that set, and another for which these factors are equally sufficient for behaviours. Vulnerability to perturbations depends on the particular distribution. In contrast to most existing approaches to the study of robustness, this thesis argues that behavioural robustness is better understood in the context of agent-environment dynamical couplings, not in terms of internal mechanisms. Such couplings, however, are not always the full determinants of robustness. Challenges and limitations of our approach are also identified for future studies

    Networks of spiking neurons and plastic synapses: implementation and control

    Get PDF
    The brain is an incredible system with a computational power that goes further beyond those of our standard computer. It consists of a network of 1011 neurons connected by about 1014 synapses: a massive parallel architecture that suggests that brain performs computation according to completely new strategies which we are far from understanding. To study the nervous system a reasonable starting point is to model its basic units, neurons and synapses, extract the key features, and try to put them together in simple controllable networks. The research group I have been working in focuses its attention on the network dynamics and chooses to model neurons and synapses at a functional level: in this work I consider network of integrate-and-fire neurons connected through synapses that are plastic and bistable. A synapses is said to be plastic when, according to some kind of internal dynamics, it is able to change the “strength”, the efficacy, of the connection between the pre- and post-synaptic neuron. The adjective bistable refers to the number of stable states of efficacy that a synapse can have; we consider synapses with two stable states: potentiated (high efficacy) or depressed (low efficacy). The considered synaptic model is also endowed with a new stop-learning mechanism particularly relevant when dealing with highly correlated patterns. The ability of this kind of systems of reproducing in simulation behaviors observed in biological networks, give sense to an attempt of implementing in hardware the studied network. This thesis situates at this point: the goal of this work is to design, control and test hybrid analog-digital, biologically inspired, hardware systems that behave in agreement with the theoretical and simulations predictions. This class of devices typically goes under the name of neuromorphic VLSI (Very-Large-Scale Integration). Neuromorphic engineering was born from the idea of designing bio-mimetic devices and represents a useful research strategy that contributes to inspire new models, stimulates the theoretical research and that proposes an effective way of implementing stand-alone power-efficient devices. In this work I present two chips, a prototype and a larger device, that are a step towards endowing VLSI, neuromorphic systems with autonomous learning capabilities adequate for not too simple statistics of the stimuli to be learnt. The main novel features of these chips are the implemented type of synaptic plasticity and the configurability of the synaptic connectivity. The reported experimental results demonstrate that the circuits behave in agreement with theoretical predictions and the advantages of the stop-learning synaptic plasticity when highly correlated patterns have to be learnt. The high degree of flexibility of these chips in the definition of the synaptic connectivity is relevant in the perspective of using such devices as building blocks of parallel, distributed multi-chip architectures that will allow to scale up the network dimensions to systems with interesting computational abilities capable to interact with real-world stimuli

    Simulation and Design of Biological and Biologically-Motivated Computing Systems

    Get PDF
    In life science, there is a great need in understandings of biological systems for therapeutics, synthetic biology, and biomedical applications. However, complex behaviors and dynamics of biological systems are hard to understand and design. In the mean time, the design of traditional computer architectures faces challenges from power consumption, device reliability, and process variations. In recent years, the convergence of computer science, computer engineering and life science has enabled new applications targeting the challenges from both engineering and biological fields. On one hand, computer modeling and simulation provides quantitative analysis and predictions of functions and behaviors of biological systems, and further facilitates the design of synthetic biological systems. On the other hand, bio-inspired devices and systems are designed for real world applications by mimicking biological functions and behaviors. This dissertation develops techniques for modeling and analyzing dynamic behaviors of biologically realistic genetic circuits and brain models and design of brain-inspired computing systems. The stability of genetic memory circuits is studied to understand its functions for its potential applications in synthetic biology. Based on the electrical-equivalent models of biochemical reactions, simulation techniques widely used for electronic systems are applied to provide quantitative analysis capabilities. In particular, system-theoretical techniques are used to study the dynamic behaviors of genetic memory circuits, where the notion of stability boundary is employed to characterize the bistability of such circuits. To facilitate the simulation-based studies of physiological and pathological behaviors in brain disorders, we construct large-scale brain models with detailed cellular mechanisms. By developing dedicated numerical techniques for brain simulation, the simulation speed is greatly improved such that dynamic simulation of large thalamocortical models with more than one million multi-compartment neurons and hundreds of synapses on commodity computer servers becomes feasible. Simulation of such large model produces biologically meaningful results demonstrating the emergence of sigma and delta waves in the early and deep stages of sleep, and suggesting the underlying cellular mechanisms that may be responsible for generation of absence seizure. Brain-inspired computing paradigms may offer promising solutions to many challenges facing the main stream Von Neumann computer architecture. To this end, we develop a biologically inspired learning system amenable to VLSI implementation. The proposed solution consists of a digitized liquid state machine (LSM) and a spike-based learning rule, providing a fully biologically inspired learning paradigm. The key design parameters of this liquid state machine are optimized to maximize the learning performance while considering hardware implementation cost. When applied to speech recognition of isolated word using TI46 speech corpus, the performance of the proposed LSM rivals several existing state-of-art techniques including the Hidden Markov Model based recognizer Sphinx-4
    corecore