62,575 research outputs found

    Neuro-Fuzzy Computing System with the Capacity of Implementation on Memristor-Crossbar and Optimization-Free Hardware Training

    Full text link
    In this paper, first we present a new explanation for the relation between logical circuits and artificial neural networks, logical circuits and fuzzy logic, and artificial neural networks and fuzzy inference systems. Then, based on these results, we propose a new neuro-fuzzy computing system which can effectively be implemented on the memristor-crossbar structure. One important feature of the proposed system is that its hardware can directly be trained using the Hebbian learning rule and without the need to any optimization. The system also has a very good capability to deal with huge number of input-out training data without facing problems like overtraining.Comment: 16 pages, 11 images, submitted to IEEE Trans. on Fuzzy system

    Spatial Reasoning

    Get PDF

    Probabilistic Programming Concepts

    Full text link
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been developed since more than 20 years

    Learning Structured Inference Neural Networks with Label Relations

    Full text link
    Images of scenes have various objects as well as abundant attributes, and diverse levels of visual categorization are possible. A natural image could be assigned with fine-grained labels that describe major components, coarse-grained labels that depict high level abstraction or a set of labels that reveal attributes. Such categorization at different concept layers can be modeled with label graphs encoding label information. In this paper, we exploit this rich information with a state-of-art deep learning framework, and propose a generic structured model that leverages diverse label relations to improve image classification performance. Our approach employs a novel stacked label prediction neural network, capturing both inter-level and intra-level label semantics. We evaluate our method on benchmark image datasets, and empirical results illustrate the efficacy of our model.Comment: Conference on Computer Vision and Pattern Recognition(CVPR) 201

    The random subgraph model for the analysis of an ecclesiastical network in Merovingian Gaul

    Get PDF
    In the last two decades many random graph models have been proposed to extract knowledge from networks. Most of them look for communities or, more generally, clusters of vertices with homogeneous connection profiles. While the first models focused on networks with binary edges only, extensions now allow to deal with valued networks. Recently, new models were also introduced in order to characterize connection patterns in networks through mixed memberships. This work was motivated by the need of analyzing a historical network where a partition of the vertices is given and where edges are typed. A known partition is seen as a decomposition of a network into subgraphs that we propose to model using a stochastic model with unknown latent clusters. Each subgraph has its own mixing vector and sees its vertices associated to the clusters. The vertices then connect with a probability depending on the subgraphs only, while the types of edges are assumed to be sampled from the latent clusters. A variational Bayes expectation-maximization algorithm is proposed for inference as well as a model selection criterion for the estimation of the cluster number. Experiments are carried out on simulated data to assess the approach. The proposed methodology is then applied to an ecclesiastical network in Merovingian Gaul. An R code, called Rambo, implementing the inference algorithm is available from the authors upon request.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS691 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A neural network architecture for implementation of expert systems for real time monitoring

    Get PDF
    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered
    • …
    corecore