59,168 research outputs found

    A Binary Neural Decision Table Classifier

    Get PDF
    In this paper, we introduce a neural network-based decision table algorithm. We focus on the implementation details of the decision table algorithm when it is constructed using the neural network. Decision tables are simple supervised classifiers which, Kohavi demonstrated, can outperform state-of-the-art classifiers such as C4.5. We couple this power with the efficiency and flexibility of a binary associative-memory neural network. We demonstrate how the binary associative-memory neural network can form the decision table index to map between attribute values and data records. We also show how two attribute selection algorithms, which may be used to pre-select the attributes for the decision table, can easily be implemented within the binary associative-memory neural framework. The first attribute selector uses mutual information between attributes and classes to select the attributes that classify best. The second attribute selector uses a probabilistic approach to evaluate randomly selected attribute subsets

    One-Class-at-a-Time Removal Sequence Planning Method for Multiclass Classification Problems

    Get PDF
    Using dynamic programming, this work develops a one-class-at-a-time removal sequence planning method to decompose a multiclass classification problem into a series of two-class problems. Compared with previous decomposition methods, the approach has the following distinct features. First, under the one-class-at-a-time framework, the approach guarantees the optimality of the decomposition. Second, for a K-class problem, the number of binary classifiers required by the method is only K-1. Third, to achieve higher classification accuracy, the approach can easily be adapted to form a committee machine. A drawback of the approach is that its computational burden increases rapidly with the number of classes. To resolve this difficulty, a partial decomposition technique is introduced that reduces the computational cost by generating a suboptimal solution. Experimental results demonstrate that the proposed approach consistently outperforms two conventional decomposition methods

    Mutual Exclusivity Loss for Semi-Supervised Deep Learning

    Full text link
    In this paper we consider the problem of semi-supervised learning with deep Convolutional Neural Networks (ConvNets). Semi-supervised learning is motivated on the observation that unlabeled data is cheap and can be used to improve the accuracy of classifiers. In this paper we propose an unsupervised regularization term that explicitly forces the classifier's prediction for multiple classes to be mutually-exclusive and effectively guides the decision boundary to lie on the low density space between the manifolds corresponding to different classes of data. Our proposed approach is general and can be used with any backpropagation-based learning method. We show through different experiments that our method can improve the object recognition performance of ConvNets using unlabeled data.Comment: 5 pages, 1 figures, ICIP 201

    Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers

    Full text link
    In this paper, we present a black-box attack against API call based machine learning malware classifiers, focusing on generating adversarial sequences combining API calls and static features (e.g., printable strings) that will be misclassified by the classifier without affecting the malware functionality. We show that this attack is effective against many classifiers due to the transferability principle between RNN variants, feed forward DNNs, and traditional machine learning classifiers such as SVM. We also implement GADGET, a software framework to convert any malware binary to a binary undetected by malware classifiers, using the proposed attack, without access to the malware source code.Comment: Accepted as a conference paper at RAID 201
    • …
    corecore