20 research outputs found

    Catalan's intervals and realizers of triangulations

    Full text link
    The Stanley lattice, Tamari lattice and Kreweras lattice are three remarkable orders defined on the set of Catalan objects of a given size. These lattices are ordered by inclusion: the Stanley lattice is an extension of the Tamari lattice which is an extension of the Kreweras lattice. The Stanley order can be defined on the set of Dyck paths of size nn as the relation of \emph{being above}. Hence, intervals in the Stanley lattice are pairs of non-crossing Dyck paths. In a former article, the second author defined a bijection Φ\Phi between pairs of non-crossing Dyck paths and the realizers of triangulations (or Schnyder woods). We give a simpler description of the bijection Φ\Phi. Then, we study the restriction of Φ\Phi to Tamari's and Kreweras' intervals. We prove that Φ\Phi induces a bijection between Tamari intervals and minimal realizers. This gives a bijection between Tamari intervals and triangulations. We also prove that Φ\Phi induces a bijection between Kreweras intervals and the (unique) realizers of stack triangulations. Thus, Φ\Phi induces a bijection between Kreweras intervals and stack triangulations which are known to be in bijection with ternary trees.Comment: 22 page

    Catalan's intervals and realizers of triangulations

    Get PDF
    The Stanley lattice, Tamari lattice and Kreweras lattice are three remarkable orders defined on the set of Catalan objects of a given size. These lattices are ordered by inclusion: the Stanley lattice is an extension of the Tamari lattice which is an extension of the Kreweras lattice. The Stanley order can be defined on the set of Dyck paths of size n as the relation of being above. Hence, intervals in the Stanley lattice are pairs of non-crossing Dyck paths. In a former article, the second author defined a bijection Φ between pairs of non-crossing Dyck paths and the realizers of triangulations (or Schnyder woods). We give a simpler description of the bijection Φ. Then, we study the restriction of Φ to Tamari's and Kreweras' intervals. We prove that Φ induces a bijection between Tamari intervals and minimal realizers. This gives a bijection between Tamari intervals and triangulations. We also prove that Φ induces a bijection between Kreweras intervals and the (unique) realizers of stack triangulations. Thus, Φ induces a bijection between Kreweras intervals and stacktriangulations which are known to be in bijection with ternary trees

    Bijections for Baxter Families and Related Objects

    Get PDF
    The Baxter number can be written as Bn=∑0nΘk,n−k−1B_n = \sum_0^n \Theta_{k,n-k-1}. These numbers have first appeared in the enumeration of so-called Baxter permutations; BnB_n is the number of Baxter permutations of size nn, and Θk,l\Theta_{k,l} is the number of Baxter permutations with kk descents and ll rises. With a series of bijections we identify several families of combinatorial objects counted by the numbers Θk,l\Theta_{k,l}. Apart from Baxter permutations, these include plane bipolar orientations with k+2k+2 vertices and l+2l+2 faces, 2-orientations of planar quadrangulations with k+2k+2 white and l+2l+2 black vertices, certain pairs of binary trees with k+1k+1 left and l+1l+1 right leaves, and a family of triples of non-intersecting lattice paths. This last family allows us to determine the value of Θk,l\Theta_{k,l} as an application of the lemma of Gessel and Viennot. The approach also allows us to count certain other subfamilies, e.g., alternating Baxter permutations, objects with symmetries and, via a bijection with a class of plan bipolar orientations also Schnyder woods of triangulations, which are known to be in bijection with 3-orientations.Comment: 31 pages, 22 figures, submitted to JCT

    Balanced Schnyder woods for planar triangulations: an experimental study with applications to graph drawing and graph separators

    Full text link
    In this work we consider balanced Schnyder woods for planar graphs, which are Schnyder woods where the number of incoming edges of each color at each vertex is balanced as much as possible. We provide a simple linear-time heuristic leading to obtain well balanced Schnyder woods in practice. As test applications we consider two important algorithmic problems: the computation of Schnyder drawings and of small cycle separators. While not being able to provide theoretical guarantees, our experimental results (on a wide collection of planar graphs) suggest that the use of balanced Schnyder woods leads to an improvement of the quality of the layout of Schnyder drawings, and provides an efficient tool for computing short and balanced cycle separators.Comment: Appears in the Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization (GD 2019
    corecore