1,017 research outputs found

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Multi-domain service orchestration over networks and clouds: a unified approach

    Get PDF
    End-to-end service delivery often includes transparently inserted Network Functions (NFs) in the path. Flexible service chaining will require dynamic instantiation of both NFs and traffic forwarding overlays. Virtualization techniques in compute and networking, like cloud and Software Defined Networking (SDN), promise such flexibility for service providers. However, patching together existing cloud and network control mechanisms necessarily puts one over the above, e.g., OpenDaylight under an OpenStack controller. We designed and implemented a joint cloud and network resource virtualization and programming API. In this demonstration, we show that our abstraction is capable for flexible service chaining control over any technology domain

    Deployment of NFV and SFC scenarios

    Get PDF
    Aquest ítem conté el treball original, defensat públicament amb data de 24 de febrer de 2017, així com una versió millorada del mateix amb data de 28 de febrer de 2017. Els canvis introduïts a la segona versió són 1) correcció d'errades 2) procediment del darrer annex.Telecommunications services have been traditionally designed linking hardware devices and providing mechanisms so that they can interoperate. Those devices are usually specific to a single service and are based on proprietary technology. On the other hand, the current model works by defining standards and strict protocols to achieve high levels of quality and reliability which have defined the carrier-class provider environment. Provisioning new services represent challenges at different levels because inserting the required devices involve changes in the network topology. This leads to slow deployment times and increased operational costs. To overcome the current burdens network function installation and insertion processes into the current service topology needs to be streamlined to allow greater flexibility. The current service provider model has been disrupted by the over-the-top Internet content providers (Facebook, Netflix, etc.), with short product cycles and fast development pace of new services. The content provider irruption has meant a competition and stress over service providers' infrastructure and has forced telco companies to research new technologies to recover market share with flexible and revenue-generating services. Network Function Virtualization (NFV) and Service Function Chaining (SFC) are some of the initiatives led by the Communication Service Providers to regain the lost leadership. This project focuses on experimenting with some of these already available new technologies, which are expected to be the foundation of the new network paradigms (5G, IOT) and support new value-added services over cost-efficient telecommunication infrastructures. Specifically, SFC scenarios have been deployed with Open Platform for NFV (OPNFV), a Linux Foundation project. Some use cases of the NFV technology are demonstrated applied to teaching laboratories. Although the current implementation does not achieve a production degree of reliability, it provides a suitable environment for the development of new functional improvements and evaluation of the performance of virtualized network infrastructures

    MeDICINE: Rapid Prototyping of Production-Ready Network Services in Multi-PoP Environments

    Get PDF
    Virtualized network services consisting of multiple individual network functions are already today deployed across multiple sites, so called multi-PoP (points of presence) environ- ments. This allows to improve service performance by optimizing its placement in the network. But prototyping and testing of these complex distributed software systems becomes extremely challenging. The reason is that not only the network service as such has to be tested but also its integration with management and orchestration systems. Existing solutions, like simulators, basic network emulators, or local cloud testbeds, do not support all aspects of these tasks. To this end, we introduce MeDICINE, a novel NFV prototyping platform that is able to execute production-ready network func- tions, provided as software containers, in an emulated multi-PoP environment. These network functions can be controlled by any third-party management and orchestration system that connects to our platform through standard interfaces. Based on this, a developer can use our platform to prototype and test complex network services in a realistic environment running on his laptop.Comment: 6 pages, pre-prin

    Multi-Domain Service Orchestration Over Networks and Clouds: A Unified Approach

    Get PDF
    End-to-end service delivery often includes transparently inserted Network Functions (NFs) in the path. Flexible service chaining will require dynamic instantiation of both NFs and traffic forwarding overlays. Virtualization techniques in compute and networking, like cloud and Software Defined Networking (SDN), promise such flexibility for service providers. However, patching together existing cloud and network control mechanisms necessarily puts one over the above, e.g., OpenDaylight under an OpenStack controller. We designed and implemented a joint cloud and network resource virtualization and programming API. In this demonstration, we show that our abstraction is capable for flexible service chaining control over any technology domains

    Graph-based feature enrichment for online intrusion detection in virtual networks

    Get PDF
    The increasing number of connected devices to provide the required ubiquitousness of Internet of Things paves the way for distributed network attacks at an unprecedented scale. Graph theory, strengthened by machine learning techniques, improves an automatic discovery of group behavior patterns of network threats often omitted by traditional security systems. Furthermore, Network Function Virtualization is an emergent technology that accelerates the provisioning of on-demand security function chains tailored to an application. Therefore, repeatable compliance tests and performance comparison of such function chains are mandatory. The contributions of this dissertation are divided in two parts. First, we propose an intrusion detection system for online threat detection enriched by a graph-learning analysis. We develop a feature enrichment algorithm that infers metrics from a graph analysis. By using different machine learning techniques, we evaluated our algorithm for three network traffic datasets. We show that the proposed graph-based enrichment improves the threat detection accuracy up to 15.7% and significantly reduces the false positives rate. Second, we aim to evaluate intrusion detection systems deployed as virtual network functions. Therefore, we propose and develop SFCPerf, a framework for an automatic performance evaluation of service function chaining. To demonstrate SFCPerf functionality, we design and implement a prototype of a security service function chain, composed of our intrusion detection system and a firewall. We show the results of a SFCPerf experiment that evaluates the chain prototype on top of the open platform for network function virtualization (OPNFV).O crescente número de dispositivos IoT conectados contribui para a ocorrência de ataques distribuídos de negação de serviço a uma escala sem precedentes. A Teoria de Grafos, reforçada por técnicas de aprendizado de máquina, melhora a descoberta automática de padrões de comportamento de grupos de ameaças de rede, muitas vezes omitidas pelos sistemas tradicionais de segurança. Nesse sentido, a virtualização da função de rede é uma tecnologia emergente que pode acelerar o provisionamento de cadeias de funções de segurança sob demanda para uma aplicação. Portanto, a repetição de testes de conformidade e a comparação de desempenho de tais cadeias de funções são obrigatórios. As contribuições desta dissertação são separadas em duas partes. Primeiro, é proposto um sistema de detecção de intrusão que utiliza um enriquecimento baseado em grafos para aprimorar a detecção de ameaças online. Um algoritmo de enriquecimento de características é desenvolvido e avaliado através de diferentes técnicas de aprendizado de máquina. Os resultados mostram que o enriquecimento baseado em grafos melhora a acurácia da detecção de ameaças até 15,7 % e reduz significativamente o número de falsos positivos. Em seguida, para avaliar sistemas de detecção de intrusões implantados como funções virtuais de rede, este trabalho propõe e desenvolve o SFCPerf, um framework para avaliação automática de desempenho do encadeamento de funções de rede. Para demonstrar a funcionalidade do SFCPerf, ´e implementado e avaliado um protótipo de uma cadeia de funções de rede de segurança, composta por um sistema de detecção de intrusão (IDS) e um firewall sobre a plataforma aberta para virtualização de função de rede (OPNFV)

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft
    • …
    corecore