66 research outputs found

    Mobility management in 5G heterogeneous networks

    Get PDF
    In recent years, mobile data traffic has increased exponentially as a result of widespread popularity and uptake of portable devices, such as smartphones, tablets and laptops. This growth has placed enormous stress on network service providers who are committed to offering the best quality of service to consumer groups. Consequently, telecommunication engineers are investigating innovative solutions to accommodate the additional load offered by growing numbers of mobile users. The fifth generation (5G) of wireless communication standard is expected to provide numerous innovative solutions to meet the growing demand of consumer groups. Accordingly the ultimate goal is to achieve several key technological milestones including up to 1000 times higher wireless area capacity and a significant cut in power consumption. Massive deployment of small cells is likely to be a key innovation in 5G, which enables frequent frequency reuse and higher data rates. Small cells, however, present a major challenge for nodes moving at vehicular speeds. This is because the smaller coverage areas of small cells result in frequent handover, which leads to lower throughput and longer delay. In this thesis, a new mobility management technique is introduced that reduces the number of handovers in a 5G heterogeneous network. This research also investigates techniques to accommodate low latency applications in nodes moving at vehicular speeds

    Game theory for dynamic spectrum sharing cognitive radio

    Get PDF
    ‘Game Theory’ is the formal study of conflict and cooperation. The theory is based on a set of tools that have been developed in order to assist with the modelling and analysis of individual, independent decision makers. These actions potentially affect any decisions, which are made by other competitors. Therefore, it is well suited and capable of addressing the various issues linked to wireless communications. This work presents a Green Game-Based Hybrid Vertical Handover Model. The model is used for heterogeneous wireless networks, which combines both dynamic (Received Signal Strength and Node Mobility) and static (Cost, Power Consumption and Bandwidth) factors. These factors control the handover decision process; whereby the mechanism successfully eliminates any unnecessary handovers, reduces delay and overall number of handovers to 50% less and 70% less dropped packets and saves 50% more energy in comparison to other mechanisms. A novel Game-Based Multi-Interface Fast-Handover MIPv6 protocol is introduced in this thesis as an extension to the Multi-Interface Fast-handover MIPv6 protocol. The protocol works when the mobile node has more than one wireless interface. The protocol controls the handover decision process by deciding whether a handover is necessary and helps the node to choose the right access point at the right time. In addition, the protocol switches the mobile nodes interfaces ‘ON’ and ‘OFF’ when needed to control the mobile node’s energy consumption and eliminate power lost of adding another interface. The protocol successfully reduces the number of handovers to 70%, 90% less dropped packets, 40% more received packets and acknowledgments and 85% less end-to-end delay in comparison to other Protocols. Furthermore, the thesis adapts a novel combination of both game and auction theory in dynamic resource allocation and price-power-based routing in wireless Ad-Hoc networks. Under auction schemes, destinations nodes bid the information data to access to the data stored in the server node. The server will allocate the data to the winner who values it most. Once the data has been allocated to the winner, another mechanism for dynamic routing is adopted. The routing mechanism is based on the source-destination cooperation, power consumption and source-compensation to the intermediate nodes. The mechanism dramatically increases the seller’s revenue to 50% more when compared to random allocation scheme and briefly evaluates the reliability of predefined route with respect to data prices, source and destination cooperation for different network settings. Last but not least, this thesis adjusts an adaptive competitive second-price pay-to-bid sealed auction game and a reputation-based game. This solves the fairness problems associated with spectrum sharing amongst one primary user and a large number of secondary users in a cognitive radio environment. The proposed games create a competition between the bidders and offers better revenue to the players in terms of fairness to more than 60% in certain scenarios. The proposed game could reach the maximum total profit for both primary and secondary users with better fairness; this is illustrated through numerical results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Market_based Framework for Mobile Surveillance Systems

    Get PDF
    The active surveillance of public and private sites is increasingly becoming a very important and critical issue. It is therefore, imperative to develop mobile surveillance systems to protect these sites. Modern surveillance systems encompass spatially distributed mobile and static sensors in order to provide effective monitoring of persistent and transient objects and events in a given Area Of Interest (AOI). The realization of the potential of mobile surveillance requires the solution of different challenging problems such as task allocation, mobile sensor deployment, multisensor management, cooperative object detection and tracking, decentralized data fusion, and interoperability and accessibility of system nodes. This thesis proposes a market-based framework that can be used to handle different problems of mobile surveillance systems. Task allocation and cooperative target-tracking are studied using the proposed framework as two challenging problems of mobile surveillance systems. These challenges are addressed individually and collectively

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    A Spectrum Sharing Method Based on Users' Behavior and Providers' Profit

    Get PDF
    In recent years, spectrum sharing has received much attention as a technique for more efficient spectrum use. In the case in which all providers are cooperative, spectrum sensing can easily be realized and can improve user throughput (on average). If that is not the case, providers are not cooperative, i.e., spectrum trading, spectrum bands are rented to promote spectrum sharing. To ensure more profit, however, non-cooperative providers must correctly estimate the fluctuation of the number of connected users to be able to determine the offered channel price. In this paper, we propose a spectrum sharing method to achieve both higher throughput and provider profit via appropriate pricing using a disaggregate behavioral model. Finally, we confirm the effectiveness of the proposed method using simulation experiments

    Modeling Security and Resource Allocation for Mobile Multi-hop Wireless Neworks Using Game Theory

    Get PDF
    This dissertation presents novel approaches to modeling and analyzing security and resource allocation in mobile ad hoc networks (MANETs). The research involves the design, implementation and simulation of different models resulting in resource sharing and security’s strengthening of the network among mobile devices. Because of the mobility, the network topology may change quickly and unpredictably over time. Moreover, data-information sent from a source to a designated destination node, which is not nearby, has to route its information with the need of intermediary mobile nodes. However, not all intermediary nodes in the network are willing to participate in data-packet transfer of other nodes. The unwillingness to participate in data forwarding is because a node is built on limited resources such as energy-power and data. Due to their limited resource, nodes may not want to participate in the overall network objectives by forwarding data-packets of others in fear of depleting their energy power. To enforce cooperation among autonomous nodes, we design, implement and simulate new incentive mechanisms that used game theoretic concepts to analyze and model the strategic interactions among rationale nodes with conflicting interests. Since there is no central authority and the network is decentralized, to address the concerns of mobility of selfish nodes in MANETs, a model of security and trust relationship was designed and implemented to improve the impact of investment into trust mechanisms. A series of simulations was carried out that showed the strengthening of security in a network with selfish and malicious nodes. Our research involves bargaining for resources in a highly dynamic ad-hoc network. The design of a new arbitration mechanism for MANETs utilizes the Dirichlet distribution for fairness in allocating resources. Then, we investigated the problem of collusion nodes in mobile ad-hoc networks with an arbitrator. We model the collusion by having a group of nodes disrupting the bargaining process by not cooperating with the arbitrator. Finally, we investigated the resource allocation for a system between agility and recovery using the concept of Markov decision process. Simulation results showed that the proposed solutions may be helpful to decision-makers when allocating resources between separated teams
    • 

    corecore