726 research outputs found

    Gearing up for action: attentive tracking dynamically tunes sensory and motor oscillations in the alpha and beta band

    Get PDF
    Allocation of attention during goal-directed behavior entails simultaneous processing of relevant and attenuation of irrelevant information. How the brain delegates such processes when confronted with dynamic (biological motion) stimuli and harnesses relevant sensory information for sculpting prospective responses remains unclear. We analyzed neuromagnetic signals that were recorded while participants attentively tracked an actor’s pointing movement that ended at the location where subsequently the response-cue indicated the required response. We found the observers’ spatial allocation of attention to be dynamically reflected in lateralized parieto-occipital alpha (8-12Hz) activity and to have a lasting influence on motor preparation. Specifically, beta (16-25Hz) power modulation reflected observers’ tendency to selectively prepare for a spatially compatible response even before knowing the required one. We discuss the observed frequency-specific and temporally evolving neural activity within a framework of integrated visuomotor processing and point towards possible implications about the mechanisms involved in action observation

    NeuroGame: neural mechanisms underlying cognitive improvement in video gamers

    Get PDF
    The video game market represents an influential and profitable industry. But concerns have been raised how video games impact on the human mind. There are reservations that video gaming may be addictive and foster aggressive behaviour. In contrast, a convincing body of research indicates that playing video games may improve cognitive processing. The exact mechanism thereof is not entirely understood. Most research suggests that video games train individuals in learning how to employ attentional control to focus on processing relevant information, while being able to suppress irrelevant information. Thus, video game players acquire the ability of being able to develop strategies to process information more efficiently. However, no algorithmic solution therefore has been provided yet. Thus, it is not clear which and how attentional control functions contribute to these effects. Moreover, neural mechanisms thereof are not well understood. We hypothesized that alterations in alpha power, i.e., modulations in brain oscillatory activity around 10 Hz, represent a promising neural substrate of video gaming effects. This was because, alpha activity represents an established neural correlate of attention processing given that its amplitude modulation corresponds to alterations in information processing. We investigated this by relating differential cognitive processing in video game players to changes in alpha power modulation. Moreover, we tried to imitate this effect using non-invasive brain stimulation. We were successful in achieving the former but not the latter. We provide a reasonable explanation for this. Thus, our results mostly support our hypothesis according to which altered alpha power may account for gaming effects

    Temporal dynamics of target selection and distractor suppression mechanisms in the right Frontal Eye Field

    Get PDF
    The ability of the human brain to selectively attend to relevant information while ignoring irrelevant distraction is essential for the successful completion of everyday tasks. The present PhD project aimed to unravel the temporal dynamics of target selection and distractor suppression in the Frontal Eye Field (FEF), a key node in the dorsolateral attention network. Previous research (Lega et al., 2019) had assessed the contribution of both IPS and FEF to the deployment of visuo- spatial attention by means of 10 Hz TMS during a visual search task. The stimulation was delivered in a post-stimulus epoch from 100 to 300 ms, considered crucial for attentional computations in visual search. This study found that the TMS protocol improved distractor suppression mechanisms, reducing the cost engendered by salient but task-irrelevant distractors. To further clarify the temporal contribution of right FEF to distractor suppression, two experiments were carried out. Experiment 1 applied single-pulse TMS over right FEF at three different time points, 50, 200 or 350 ms after search array onset. Experiment 2 aimed to exert a stronger TMS effect over right FEF while maintaining a temporal-punctate approach. It applied trains of triple-pulse TMS at 20 Hz over right FEF in three different time windows: from -50 to 50 ms (T1), from 100 to 200 ms (T2) and from 250 to 350 ms (T3) after the search array onset. While Experiment 1 showed only a general, time-unspecific and quasi- significant effect of stimulation over response times, Experiment 2 revealed that stimulation at T2 (100-200 ms) was associated with an increase of the distractor cost, specifically for distractors located contralaterally to the stimulation site. These findings support the role of right FEF in suppressing distractions from salient but irrelevant stimuli and suggest that TMS may activate/inhibit the neural network that regulates and limits interference from such distractions. Further research is needed to precisely assess the physiological effects of different TMS protocols of the right FEF and its influence on attentional computation

    Long-term effects of cranial irradiation and intrathecal chemotherapy in treatment of childhood leukemia: a MEG study of power spectrum and correlated cognitive dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prophylaxis to prevent relapses in the central nervous system after childhood acute lymphoblastic leukemia (ALL) used to consist of both intrathecal chemotherapy (CT) and cranial irradiation (CRT). CRT was mostly abolished in the eighties because of its neurotoxicity, and replaced with more intensive intrathecal CT. In this study, a group of survivors treated with CRT before 1983 and another group treated without CRT thereafter are investigated 20–25 years later, giving a much stronger perspective on long-term quality of life than previous studies. The outcomes will help to better understand these groups’ current needs and will aid in anticipating late effects of prophylactic CRT that is currently applied for other diseases. This study evaluates oscillatory neuronal activity in these long-term survivors. Power spectrum deviations are hypothesized to correlate with cognitive dysfunction.</p> <p>Methods</p> <p>Resting state eyes-closed magnetoencephalography (MEG) recordings were obtained from 14 ALL survivors treated with CT + CRT, 18 treated with CT alone and 35 controls. Relative spectral power was calculated in the δ, θ, α1, α2, β and γ frequency bands. The Amsterdam Neuropsychological Tasks (ANT) program was used to assess cognition in the executive functions domain. MEG data and ANT scores were correlated.</p> <p>Results</p> <p>In the CT + CRT group, relative θ power was slightly increased (p = 0.069) and α2 power was significantly decreased (p = 0.006). The CT + CRT group performed worse on various cognitive tests. A deficiency in visuomotor accuracy, especially of the right hand, could be clearly associated with the deviating regional θ and α2 powers (0.471 < r < 0.697). A significant association between decreased regional α2 power and less attentional fluctuations was found for CT + CRT patients as well as controls (0.078 < r < 0.666). Patients treated with CT alone displayed a power spectrum similar to controls, except for a significantly increased level of left frontal α2 power (p = 0.030).</p> <p>Conclusions</p> <p>The tendency towards global slowing of brain oscillatory activity, together with the fact that dementia has been reported as a late effect of CRT and the neuropsychological deficiencies currently present, suggest that the irradiated brain might be aging faster and could be at risk for early‐onset dementia. The CT group showed no signs of early aging.</p

    Electrophysiological measures of flexible attentional control and visual working memory maintenance

    Get PDF
    Top-down attentional control can be used to both guide attention toward and away from items according to their goal relevance. When given a feature-based cue, such as the colour of an upcoming target, individuals can allocate attention and memory resources according to the item’s priority. This distribution of resources is continuous, such that the amount that an item receives is dependent on its likelihood of being probed. However, top-down goals are often challenged by bottom-up stimulus salience of distractors. One’s ability to avoid attentional capture by distractors is limited by attentional control over bottom-up biases. In particular, individuals with anxiety have attentional biases toward both neutral and threatening distractors, leading to unnecessary storage of distractors in visual working memory (VWM). Using electrophysiology, it is possible to study the time course of these attentional processes to gain a better understanding of how attentional selection, suppression, and VWM maintenance relate to attentional control. The present thesis explores the event-related potential (ERP) correlates and time course of flexible attentional control, as well as how individual differences in anxiety limit this ability. In the first study, I used positive and negative feature-based cues to demonstrate that attentional selection occurs earlier when guided by target information than distractor information. Additionally, it was found that greater anxiety resulted in selection of the salient distractor, demonstrating that anxiety compromises early attentional control. For the second study, I further examined deficits in attentional control in anxiety. Here, it was demonstrated that individuals with high anxiety had early selection of threat-related distractors, whereas individuals with low anxiety could pro-actively suppress them. Interestingly, this effect did not carry over to VWM maintenance, suggesting that deficits in early attentional control do not necessarily result in poor memory filtering. In the final study, I examined the link between continuous attentional allocation and VWM maintenance, finding that individuals use priority information to flexibly select and filter information from VWM. Together, in this thesis I propose that attentional control over selection, suppression, and VWM filtering processes is flexible, time-dependent, and driven both by external cues and internal biases related to individual differences in anxiety

    Experience-Related Differences on Attentional Control in Cognitive Ageing: An Investigation of Bilingualism Effects on Flanker Conflicts in TFRs

    Get PDF
    Bilingualism has been argued to help maintain cognitive functioning in ageing by contributing to the cognitive reserve, the brain’s functional adaptability and resilience against cognitive decline. Within this, the constant engagement with bilingual mechanisms to monitor multiple languages arguably leads to neurocognitive adaptations of attentional systems. Examining bilingual experience as a spectrum, and how these potentially link to variable individual outcomes in cognitive ageing remains understudied. Therefore, this study investigates the effect of individual differences in bilingual experiences on neurocognition in middle-aged adults and seniors. In the study, a non-linguistic flanker task was implemented while measures of both indices of brain activity through EEG and behavioral data were collected. In looking at the relation between differences in bilingual experiences and ageing, the study found that more balanced bilinguals were able to maintain their reliance on alpha activity in ageing, associated to the efficiency of attentional resources to focus on task relevant stimuli. Furthermore, the study found indications of a post stimulus increase in theta power related to cognitive control recruitment. The behavioral findings however, showed the opposite pattern as to what was expected, as subjects with more engagement in bilingual experiences showed a bigger effect of age on flanker task reaction times. Overall, these findings indicate that individual differences in bilingual experiences have a modulatory effect on neurocognition in ageing, potentially leading to better maintained cognitive functioning in cognitive decline
    • …
    corecore