585 research outputs found

    Robust scheduling for Berth Allocation and Quay Crane Assignment Problem

    Full text link
    [EN] Decision makers must face the dynamism and uncertainty of real-world environments when they need to solve the scheduling problems. Different incidences or breakdowns, for example, initial data could change or some resources could become unavailable, may eventually cause the infeasibility of the obtained schedule. To overcome this issue, a robust model and a proactive approach are presented for scheduling problems without any previous knowledge about incidences. This paper is based on proportionally distributing operational buffers among the tasks. In this paper, we consider the berth allocation problem and the quay crane assignment problem as a representative example of scheduling problems. The dynamism and uncertainty are managed by assessing the robustness of the schedules. The robustness is introduced by means of operational buffer times to absorb those unknown incidences or breakdowns. Therefore, this problem becomes a multiobjective combinatorial optimization problem that aims to minimize the total service time, to maximize the buffer times, and to minimize the standard deviation of the buffer times. To this end, a mathematical model and a new hybrid multiobjective metaheuristic is presented and compared with two well-known multiobjective genetic algorithms: NSGAII and SPEA2+.This work has been partially supported by by the Spanish Government under research project MINECO TIN2013-46511-C2-1-P, the project PIRSES-GA-2011-294931 (FP7-PEOPLE-2011-IRSES), and the predoctoral FPU fellowship (AP2010-4405).Rodríguez Molins, M.; Salido Gregorio, MA.; Barber Sanchís, F. (2014). Robust scheduling for Berth Allocation and Quay Crane Assignment Problem. Mathematical Problems in Engineering. 2014(1):1-17. https://doi.org/10.1155/2014/834927S11720141Imai, A., Chen, H. C., Nishimura, E., & Papadimitriou, S. (2008). The simultaneous berth and quay crane allocation problem. Transportation Research Part E: Logistics and Transportation Review, 44(5), 900-920. doi:10.1016/j.tre.2007.03.003Hu, Q.-M., Hu, Z.-H., & Du, Y. (2014). Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels. Computers & Industrial Engineering, 70, 1-10. doi:10.1016/j.cie.2014.01.003Salido, M. A., Rodriguez-Molins, M., & Barber, F. (2011). Integrated intelligent techniques for remarshaling and berthing in maritime terminals. Advanced Engineering Informatics, 25(3), 435-451. doi:10.1016/j.aei.2010.10.001Rodriguez-Molins, M., Salido, M. A., & Barber, F. (2013). A GRASP-based metaheuristic for the Berth Allocation Problem and the Quay Crane Assignment Problem by managing vessel cargo holds. Applied Intelligence, 40(2), 273-290. doi:10.1007/s10489-013-0462-4Stahlbock, R., & Voß, S. (2007). Operations research at container terminals: a literature update. OR Spectrum, 30(1), 1-52. doi:10.1007/s00291-007-0100-9Lim, A. (1998). The berth planning problem. Operations Research Letters, 22(2-3), 105-110. doi:10.1016/s0167-6377(98)00010-8Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615-627. doi:10.1016/j.ejor.2009.05.031Kim, K. H., & Moon, K. C. (2003). Berth scheduling by simulated annealing. Transportation Research Part B: Methodological, 37(6), 541-560. doi:10.1016/s0191-2615(02)00027-9Giallombardo, G., Moccia, L., Salani, M., & Vacca, I. (2010). Modeling and solving the Tactical Berth Allocation Problem. Transportation Research Part B: Methodological, 44(2), 232-245. doi:10.1016/j.trb.2009.07.003Liang, C., Guo, J., & Yang, Y. (2009). Multi-objective hybrid genetic algorithm for quay crane dynamic assignment in berth allocation planning. Journal of Intelligent Manufacturing, 22(3), 471-479. doi:10.1007/s10845-009-0304-8Diabat, A., & Theodorou, E. (2014). An Integrated Quay Crane Assignment and Scheduling Problem. Computers & Industrial Engineering, 73, 115-123. doi:10.1016/j.cie.2013.12.012Park, Y.-M., & Kim, K. H. (2003). A scheduling method for Berth and Quay cranes. OR Spectrum, 25(1), 1-23. doi:10.1007/s00291-002-0109-zZhang, C., Zheng, L., Zhang, Z., Shi, L., & Armstrong, A. J. (2010). The allocation of berths and quay cranes by using a sub-gradient optimization technique. Computers & Industrial Engineering, 58(1), 40-50. doi:10.1016/j.cie.2009.08.002Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2007). Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. Journal of Scheduling, 11(2), 121-136. doi:10.1007/s10951-007-0021-0Hendriks, M., Laumanns, M., Lefeber, E., & Udding, J. T. (2010). Robust cyclic berth planning of container vessels. OR Spectrum, 32(3), 501-517. doi:10.1007/s00291-010-0198-zHan, X., Lu, Z., & Xi, L. (2010). A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. European Journal of Operational Research, 207(3), 1327-1340. doi:10.1016/j.ejor.2010.07.018Xu, Y., Chen, Q., & Quan, X. (2011). Robust berth scheduling with uncertain vessel delay and handling time. Annals of Operations Research, 192(1), 123-140. doi:10.1007/s10479-010-0820-0Zhen, L., & Chang, D.-F. (2012). A bi-objective model for robust berth allocation scheduling. Computers & Industrial Engineering, 63(1), 262-273. doi:10.1016/j.cie.2012.03.003Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135-4151. doi:10.1016/j.asoc.2011.02.032Ehrgott, M., & Gandibleux, X. (2008). Hybrid Metaheuristics for Multi-objective Combinatorial Optimization. Studies in Computational Intelligence, 221-259. doi:10.1007/978-3-540-78295-7_8Hanafi, R., & Kozan, E. (2014). A hybrid constructive heuristic and simulated annealing for railway crew scheduling. Computers & Industrial Engineering, 70, 11-19. doi:10.1016/j.cie.2014.01.002Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Kim, M., Hiroyasu, T., Miki, M., & Watanabe, S. (2004). SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2. Parallel Problem Solving from Nature - PPSN VIII, 742-751. doi:10.1007/978-3-540-30217-9_75Rodriguez-Molins, M., Ingolotti, L., Barber, F., Salido, M. A., Sierra, M. R., & Puente, J. (2014). A genetic algorithm for robust berth allocation and quay crane assignment. Progress in Artificial Intelligence, 2(4), 177-192. doi:10.1007/s13748-014-0056-3Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32-49. doi:10.1016/j.swevo.2011.03.001Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 12(3), 269-283. doi:10.1109/tevc.2007.900837While, L., Bradstreet, L., & Barone, L. (2012). A Fast Way of Calculating Exact Hypervolumes. IEEE Transactions on Evolutionary Computation, 16(1), 86-95. doi:10.1109/tevc.2010.207729

    A genetic algorithm for robust berth allocation and quay crane assignment

    Get PDF
    Scheduling problems usually obtain the optimal solutions assuming that the environment is deterministic. However, actually the environment is dynamic and uncertain. Thus, the initial data could change and the initial schedule obtained might be unfeasible. To overcome this issue, a proactive approach is presented for scheduling problems without any previous knowledge about the incidences that can occur. In this paper, we consider the berth allocation problem and the quay crane assignment problem as a representative example of scheduling problems where a typical objective is to minimize the service time. The robustness is introduced within this problem by means of buffer times that should be maximized to absorb possible incidences or breakdowns. Therefore, this problem becomes a multi-objective optimization problem with two opposite objectives: minimizing the total service time and maximizing the robustness or buffer time

    An evolutionary approach to a combined mixed integer programming model of seaside operations as arise in container ports

    Get PDF
    This paper puts forward an integrated optimisation model that combines three distinct problems, namely berth allocation, quay crane assignment, and quay crane scheduling that arise in container ports. Each one of these problems is difficult to solve in its own right. However, solving them individually leads almost surely to sub-optimal solutions. Hence, it is desirable to solve them in a combined form. The model is of the mixed-integer programming type with the objective being to minimize the tardiness of vessels and reduce the cost of berthing. Experimental results show that relatively small instances of the proposed model can be solved exactly using CPLEX. Large scale instances, however, can only be solved in reasonable times using heuristics. Here, an implementation of the genetic algorithm is considered. The effectiveness of this implementation is tested against CPLEX on small to medium size instances of the combined model. Larger size instances were also solved with the genetic algorithm, showing that this approach is capable of finding the optimal or near optimal solutions in realistic times

    Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals

    Full text link
    Tesis por compendioDespite the continuous evolution in computers and information technology, real-world combinatorial optimization problems are NP-problems, in particular in the domain of planning and scheduling. Thus, although exact techniques from the Operations Research (OR) field, such as Linear Programming, could be applied to solve optimization problems, they are difficult to apply in real-world scenarios since they usually require too much computational time, i.e: an optimized solution is required at an affordable computational time. Furthermore, decision makers often face different and typically opposing goals, then resulting multi-objective optimization problems. Therefore, approximate techniques from the Artificial Intelligence (AI) field are commonly used to solve the real world problems. The AI techniques provide richer and more flexible representations of real-world (Gomes 2000), and they are widely used to solve these type of problems. AI heuristic techniques do not guarantee the optimal solution, but they provide near-optimal solutions in a reasonable time. These techniques are divided into two broad classes of algorithms: constructive and local search methods (Aarts and Lenstra 2003). They can guide their search processes by means of heuristics or metaheuristics depending on how they escape from local optima (Blum and Roli 2003). Regarding multi-objective optimization problems, the use of AI techniques becomes paramount due to their complexity (Coello Coello 2006). Nowadays, the point of view for planning and scheduling tasks has changed. Due to the fact that real world is uncertain, imprecise and non-deterministic, there might be unknown information, breakdowns, incidences or changes, which become the initial plans or schedules invalid. Thus, there is a new trend to cope these aspects in the optimization techniques, and to seek robust solutions (schedules) (Lambrechts, Demeulemeester, and Herroelen 2008). In this way, these optimization problems become harder since a new objective function (robustness measure) must be taken into account during the solution search. Therefore, the robustness concept is being studied and a general robustness measure has been developed for any scheduling problem (such as Job Shop Problem, Open Shop Problem, Railway Scheduling or Vehicle Routing Problem). To this end, in this thesis, some techniques have been developed to improve the search of optimized and robust solutions in planning and scheduling problems. These techniques offer assistance to decision makers to help in planning and scheduling tasks, determine the consequences of changes, provide support in the resolution of incidents, provide alternative plans, etc. As a case study to evaluate the behaviour of the techniques developed, this thesis focuses on problems related to container terminals. Container terminals generally serve as a transshipment zone between ships and land vehicles (trains or trucks). In (Henesey 2006a), it is shown how this transshipment market has grown rapidly. Container terminals are open systems with three distinguishable areas: the berth area, the storage yard, and the terminal receipt and delivery gate area. Each one presents different planning and scheduling problems to be optimized (Stahlbock and Voß 2008). For example, berth allocation, quay crane assignment, stowage planning, and quay crane scheduling must be managed in the berthing area; the container stacking problem, yard crane scheduling, and horizontal transport operations must be carried out in the yard area; and the hinterland operations must be solved in the landside area. Furthermore, dynamism is also present in container terminals. The tasks of the container terminals take place in an environment susceptible of breakdowns or incidences. For instance, a Quay Crane engine stopped working and needs to be revised, delaying this task one or two hours. Thereby, the robustness concept can be included in the scheduling techniques to take into consideration some incidences and return a set of robust schedules. In this thesis, we have developed a new domain-dependent planner to obtain more effi- cient solutions in the generic problem of reshuffles of containers. Planning heuristics and optimization criteria developed have been evaluated on realistic problems and they are applicable to the general problem of reshuffling in blocks world scenarios. Additionally, we have developed a scheduling model, using constructive metaheuristic techniques on a complex problem that combines sequences of scenarios with different types of resources (Berth Allocation, Quay Crane Assignment, and Container Stacking problems). These problems are usually solved separately and their integration allows more optimized solutions. Moreover, in order to address the impact and changes that arise in dynamic real-world environments, a robustness model has been developed for scheduling tasks. This model has been applied to metaheuristic schemes, which are based on genetic algorithms. The extension of such schemes, incorporating the robustness model developed, allows us to evaluate and obtain more robust solutions. This approach, combined with the classical optimality criterion in scheduling problems, allows us to obtain, in an efficient in way, optimized solution able to withstand a greater degree of incidents that occur in dynamic scenarios. Thus, a proactive approach is applied to the problem that arises with the presence of incidences and changes that occur in typical scheduling problems of a dynamic real world.Rodríguez Molins, M. (2015). Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48545TESISCompendi

    The synergistic effect of operational research and big data analytics in greening container terminal operations: a review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ‘big data’ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research

    Distributionally robust optimization for the berth allocation problem under uncertainty

    Get PDF
    Berth allocation problems are amongst the most important problems occurring in port terminals, and they are greatly affected by several unpredictable events. As a result, the study of these problems under uncertainty has been a target of more and more researchers. Following this research line, we consider the berth allocation problem under uncertain handling times. A distributionally robust two-stage model is presented to minimize the worst-case of the expected sum of delays with respect to a set of possible probability distributions of the handling times. The solutions of the proposed model are obtained by an exact decomposition algorithm for which several improvements are discussed. An adaptation of the proposed algorithm for the case where the assumption of relatively complete recourse fails is also presented. Extensive computational tests are reported to evaluate the effectiveness of the proposed approach and to compare the solutions obtained with those resulting from the stochastic and robust approaches.Fundação para a Ciência e a Tecnologiapublishe

    Combined quay crane assignment and quay crane scheduling with crane inter-vessel movement and non-interference constraints

    Get PDF
    Integrated models of the quay crane assignment problem (QCAP) and the quay crane scheduling problem (QCSP) exist. However, they have shortcomings in that some do not allow movement of quay cranes between vessels, others do not take into account precedence relationships between tasks, and yet others do not avoid interference between quay cranes. Here, an integrated and comprehensive optimization model that combines the two distinct QCAP and QCSP problems which deals with the issues raised is put forward. The model is of the mixed-integer programming type with the objective being to minimize the difference between tardiness cost and earliness income based on finishing time and requested departure time for a vessel. Because of the extent of the model and the potential for even small problems to lead to large instances, exact methods can be prohibitive in computational time. For this reason an adapted genetic algorithm (GA) is implemented to cope with this computational burden. Experimental results obtained with branch-and-cut as implemented in CPLEX and GA for small to large-scale problem instances are presented. The paper also includes a review of the relevant literature

    Models and Solutions Algorithms for Improving Operations in Marine Transportation

    Get PDF
    International seaborne trade rose significantly during the past decades. This created the need to improve efficiency of liner shipping services and marine container terminal operations to meet the growing demand. The objective of this dissertation is to develop simulation and mathematical models that may enhance operations of liner shipping services and marine container terminals, taking into account the main goals of liner shipping companies (e.g., reduce fuel consumption and vessel emissions, ensure on-time arrival to each port of call, provide vessel scheduling strategies that capture sailing time variability, consider variable port handling times, increase profit, etc.) and terminal operators (e.g., decrease turnaround time of vessels, improve terminal productivity without significant capital investments, reduce possible vessel delays and associated penalties, ensure fast recovery in case of natural and man-made disasters, make the terminal competitive, maximize revenues, etc.). This dissertation proposes and models two alternatives for improving operations of marine container terminals: 1) a floaterm concept and 2) a new contractual agreement between terminal operators. The main difference between floaterm and conventional marine container terminals is that in the former case some of import and/or transshipment containers are handled by off-shore quay cranes and placed on container barges, which are further towed by push boats to assigned feeder vessels or floating yard. According to the new collaborative agreement, a dedicated marine container terminal operator can divert some of its vessels for the service at a multi-user terminal during specific time windows. Another part of dissertation focuses on enhancing operations of liner shipping services by introducing the following: 1) a new collaborative agreement between a liner shipping company and terminal operators and 2) a new framework for modeling uncertainty in liner shipping. A new collaborative mechanism assumes that each terminal operator is able to offer a set of handling rates to a liner shipping company, which may result in a substantial total route service cost reduction. The suggested framework for modeling uncertainty is expected to assist liner shipping companies in designing robust vessel schedules

    Barge Prioritization, Assignment, and Scheduling During Inland Waterway Disruption Responses

    Get PDF
    Inland waterways face natural and man-made disruptions that may affect navigation and infrastructure operations leading to barge traffic disruptions and economic losses. This dissertation investigates inland waterway disruption responses to intelligently redirect disrupted barges to inland terminals and prioritize offloading while minimizing total cargo value loss. This problem is known in the literature as the cargo prioritization and terminal allocation problem (CPTAP). A previous study formulated the CPTAP as a non-linear integer programming (NLIP) model solved with a genetic algorithm (GA) approach. This dissertation contributes three new and improved approaches to solve the CPTAP. The first approach is a decomposition based sequential heuristic (DBSH) that reduces the time to obtain a response solution by decomposing the CPTAP into separate cargo prioritization, assignment, and scheduling subproblems. The DBSH integrates the Analytic Hierarchy Process and linear programming to prioritize cargo and allocate barges to terminals. Our findings show that compared to the GA approach, the DBSH is more suited to solve large sized decision problems resulting in similar or reduced cargo value loss and drastically improved computational time. The second approach formulates CPTAP as a mixed integer linear programming (MILP) model improved through the addition of valid inequalities (MILP\u27). Due to the complexity of the NLIP, the GA results were validated only for small size instances. This dissertation fills this gap by using the lower bounds of the MILP\u27 model to validate the quality of all prior GA solutions. In addition, a comparison of the MILP\u27 and GA solutions for several real world scenarios show that the MILP\u27 formulation outperforms the NLIP model solved with the GA approach by reducing the total cargo value loss objective. The third approach reformulates the MILP model via Dantzig-Wolfe decomposition and develops an exact method based on branch-and-price technique to solve the model. Previous approaches obtained optimal solutions for instances of the CPTAP that consist of up to five terminals and nine barges. The main contribution of this new approach is the ability to obtain optimal solutions of larger CPTAP instances involving up to ten terminals and thirty barges in reasonable computational time

    Exact and Heuristic Methods for Integrated Container Terminal Problems

    Get PDF
    • …
    corecore