797 research outputs found

    A bi-criteria evolutionary algorithm for a constrained multi-depot vehicle routing problem

    Get PDF
    Most research about the vehicle routing problem (VRP) does not collectively address many of the constraints that real-world transportation companies have regarding route assignments. Consequently, our primary objective is to explore solutions for real-world VRPs with a heterogeneous fleet of vehicles, multi-depot subcontractors (drivers), and pickup/delivery time window and location constraints. We use a nested bi-criteria genetic algorithm (GA) to minimize the total time to complete all jobs with the fewest number of route drivers. Our model will explore the issue of weighting the objectives (total time vs. number of drivers) and provide Pareto front solutions that can be used to make decisions on a case-by-case basis. Three different real-world data sets were used to compare the results of our GA vs. transportation field experts’ job assignments. For the three data sets, all 21 Pareto efficient solutions yielded improved overall job completion times. In 57 % (12/21) of the cases, the Pareto efficient solutions also utilized fewer drivers than the field experts’ job allocation strategies

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Tackling Dynamic Vehicle Routing Problem with Time Windows by means of Ant Colony System

    Full text link
    The Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) is an extension of the well-known Vehicle Routing Problem (VRP), which takes into account the dynamic nature of the problem. This aspect requires the vehicle routes to be updated in an ongoing manner as new customer requests arrive in the system and must be incorporated into an evolving schedule during the working day. Besides the vehicle capacity constraint involved in the classical VRP, DVRPTW considers in addition time windows, which are able to better capture real-world situations. Despite this, so far, few studies have focused on tackling this problem of greater practical importance. To this end, this study devises for the resolution of DVRPTW, an ant colony optimization based algorithm, which resorts to a joint solution construction mechanism, able to construct in parallel the vehicle routes. This method is coupled with a local search procedure, aimed to further improve the solutions built by ants, and with an insertion heuristics, which tries to reduce the number of vehicles used to service the available customers. The experiments indicate that the proposed algorithm is competitive and effective, and on DVRPTW instances with a higher dynamicity level, it is able to yield better results compared to existing ant-based approaches.Comment: 10 pages, 2 figure

    A robust solving strategy for the vehicle routing problem with multiple depots and multiple objectives

    Get PDF
    This document presents the development of a robust solving strategy for the Vehicle Routing Problem with Multiple Depots and Multiple Objectives (MO-MDVRP). The problem tackeled in this work is the problem to minimize the total cost and the load imbalance in vehicle routing plan for distribution of goods. This thesis presents a MILP mathematical model and a solution strategy based on a Hybrid Multi- Objective Scatter Search Algorithm. Several experiments using simulated instances were run proving that the proposed method is quite robust, this is shown in execution times (less than 4 minutes for an instance with 8 depots and 300 customers); also, the proposed method showed good results compared to the results found with the MILP model for small instances (up to 20 clients and 2 depots).MaestríaMagister en Ingeniería Industria

    A bi-objective stochastic approach for stochastic CARP

    Get PDF
    The Capacitated Arc Routing Problem (CARP) occurs in applications like urban waste collection or winter gritting. It is usually defined in literature on an undirected graph G = (V, E) , with a set V of n nodes and a set E of m edges. A fleet of identical vehicles of capacity Q is based at a depot node. Each edge i has a cost (length) ci and a demand qi (e.g. an amount of waste), and it may be traversed any number of times. The edges with non-zero demands or tasks require service by a vehicle. The goal is to determine a set of vehicle trips (routes) of minimum total cost, such that each trip starts and ends at the depot, each task is serviced by one single trip, and the total demand handled by any vehicle does not exceed Q . To the best of our knowledge the best published method is a memetic algorithm first introduced in 2001. This article provides a new extension of the NSGA II (Non-dominated Sorting Genetic Algorithm) template to comply with the stochastic sight of the CARP. The main contribution is: - to introduce mathematical expression to evaluate both cost and duration of the longest trip and also standard deviation of these two criteria. - to use a NGA-II template to optimize simultaneously the cost and the duration of the longest trip including standard deviation. The numerical experiments managed on the thee well-known benchmark sets of DeArmon, Belenguer and Benavent and Eglese, prove it is possible to obtain robust solutions in four simultaneous criteria in rather short computation times

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    Time and multiple objectives in scheduling and routing problems

    Get PDF
    Many optimization problems encountered in practice are multi-objective by nature, i.e., different objectives are conflicting and equally important. Many times, it is not desirable to drop some of them or to optimize them in a composite single objective or hierarchical manner. Furthermore, cost parameters change over time which makes optimization problems harder. For instance, in the transport sector, travel costs are a function of travel time which changes depending on the time of the day a vehicle is travelling (e.g., due to road congestion). Road congestion results in tremendous delays which lead to a decrease in the service quality and the responsiveness of logistic service providers. In Chapter 2, we develop a generic approach to deal with Multi-Objective Scheduling Problems (MOSPs) with State-Dependent Cost Parameters. The aim is to determine the set of Pareto solutions that capture the trade offs between the different conflicting objectives. Due to the complexity of MOSPs, an efficient approximation based on dynamic programming is developed. The approximation has a provable worse case performance guarantee. Even though the generated approximate Pareto front consist of fewer solutions, it still represents a good coverage of the true Pareto front. Furthermore, considerable gains in computation times are achieved. In Chapter 3, the developed methodology is validated on the multi-objective timedependent knapsack problem. In the classical knapsack problem, the input consists of a knapsack with a finite capacity and a set of items, each with a certain weight and a cost. A feasible solution to the knapsack problem is a selection of items such that their total weight does not exceed the knapsack capacity. The goal is to maximize the single objective function consisting of the total pro t of the selected items. We extend the classical knapsack problem in two ways. First, we consider time-dependent profits (e.g., in a retail environment profit depends on whether it is Christmas or not)

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set
    corecore