172 research outputs found

    A betting interpretation for probabilities and Dempster-Shafer degrees of belief

    Get PDF
    There are at least two ways to interpret numerical degrees of belief in terms of betting: (1) you can offer to bet at the odds defined by the degrees of belief, or (2) you can judge that a strategy for taking advantage of such betting offers will not multiply the capital it risks by a large factor. Both interpretations can be applied to ordinary additive probabilities and used to justify updating by conditioning. Only the second can be applied to Dempster-Shafer degrees of belief and used to justify Dempster's rule of combination.Comment: 20 page

    A mathematical theory of evidence for G.L.S. Shackle

    Get PDF
    Evidence Theory is a branch of mathematics that concerns the combination of empirical evidence in an individual's mind in order to construct a coherent picture of reality. Designed to deal with unexpected empirical evidence suggesting new possibilities, evidence theory has a lot in common with Shackle's idea of decision-making as a creative act. This essay investigates this connection in detail, pointing to the usefulness of evidence theory to formalise and extend Shackle's decision theory. In order to ease a proper framing of the issues involved, evidence theory is not only compared with Shackle's ideas but also with additive and sub-additive probability theories. Furthermore, the presentation of evidence theory does not refer to the original version only, but takes account of its most recent developments, too.

    A note on p-values interpreted as plausibilities

    Full text link
    P-values are a mainstay in statistics but are often misinterpreted. We propose a new interpretation of p-value as a meaningful plausibility, where this is to be interpreted formally within the inferential model framework. We show that, for most practical hypothesis testing problems, there exists an inferential model such that the corresponding plausibility function, evaluated at the null hypothesis, is exactly the p-value. The advantages of this representation are that the notion of plausibility is consistent with the way practitioners use and interpret p-values, and the plausibility calculation avoids the troublesome conditioning on the truthfulness of the null. This connection with plausibilities also reveals a shortcoming of standard p-values in problems with non-trivial parameter constraints.Comment: 13 pages, 1 figur

    Coherence in the aggregate: a betting method for belief functions on many-valued events

    Get PDF
    Betting methods, of which de Finetti's Dutch Book is by far the most well-known, are uncertainty modelling devices which accomplish a twofold aim. Whilst providing an (operational) interpretation of the relevant measure of uncertainty, they also provide a formal definition of coherence. The main purpose of this paper is to put forward a betting method for belief functions on MV-algebras of many-valued events which allows us to isolate the corresponding coherence criterion, which we term coherence in the aggregate. Our framework generalises the classical Dutch Book method

    A Theory of Factfinding: The Logic for Processing Evidence

    Get PDF
    Academics have never agreed on a theory of proof. The darkest corner of anyone’s theory has concerned how legal decisionmakers logically should find facts. This Article pries open that cognitive black box. It does so by employing multivalent logic, which enables it to overcome the traditional probability problems that impeded all prior attempts. The result is the first-ever exposure of the proper logic for finding a fact or a case’s facts. The focus will be on the evidential processing phase, rather than the application of the standard of proof as tracked in my prior work. Processing evidence involves (1) reasoning inferentially from a piece of evidence to a degree of belief and of disbelief in the element to be proved, (2) aggregating pieces of evidence that all bear to some degree on one element in order to form a composite degree of belief and of disbelief in the element, and (3) considering the series of elemental beliefs and disbeliefs to reach a decision. Zeroing in, the factfinder in step #1 should connect each item of evidence to an element to be proved by constructing a chain of inferences, employing multivalent logic’s usual rules for conjunction and disjunction to form a belief function that reflects the belief and the disbelief in the element and also the uncommitted belief reflecting uncertainty. The factfinder in step #2 should aggregate, by weighted arithmetic averaging, the belief functions resulting from all the items of evidence that bear on any one element, creating a composite belief function for the element. The factfinder in step #3 does not need to combine elements, but instead should directly move to testing whether the degree of belief from each element’s composite belief function sufficiently exceeds the corresponding degree of disbelief. In sum, the factfinder should construct a chain of inferences to produce a belief function for each item of evidence bearing on an element, and then average them to produce for each element a composite belief function ready for the element-by-element standard of proof. This Article performs the task of mapping normatively how to reason from legal evidence to a decision on facts. More significantly, it constitutes a further demonstration of how embedded the multivalent-belief model is in our law

    The Combination of Paradoxical, Uncertain, and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference

    Full text link
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this chapter, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing with imprecise, uncertain and paradoxical sources of information. We focus our presentation here rather on the foundations of DSmT, and on the two important new rules of combination, than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout the presentation to show the efficiency and the generality of this new approach. The last part of this chapter concerns the presentation of the neutrosophic logic, the neutro-fuzzy inference and its connection with DSmT. Fuzzy logic and neutrosophic logic are useful tools in decision making after fusioning the information using the DSm hybrid rule of combination of masses.Comment: 20 page
    • …
    corecore