653 research outputs found

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    A Systematic Review of Learning based Notion Change Acceptance Strategies for Incremental Mining

    Get PDF
    The data generated contemporarily from different communication environments is dynamic in content different from the earlier static data environments. The high speed streams have huge digital data transmitted with rapid context changes unlike static environments where the data is mostly stationery. The process of extracting, classifying, and exploring relevant information from enormous flowing and high speed varying streaming data has several inapplicable issues when static data based strategies are applied. The learning strategies of static data are based on observable and established notion changes for exploring the data whereas in high speed data streams there are no fixed rules or drift strategies existing beforehand and the classification mechanisms have to develop their own learning schemes in terms of the notion changes and Notion Change Acceptance by changing the existing notion, or substituting the existing notion, or creating new notions with evaluation in the classification process in terms of the previous, existing, and the newer incoming notions. The research in this field has devised numerous data stream mining strategies for determining, predicting, and establishing the notion changes in the process of exploring and accurately predicting the next notion change occurrences in Notion Change. In this context of feasible relevant better knowledge discovery in this paper we have given an illustration with nomenclature of various contemporarily affirmed models of benchmark in data stream mining for adapting the Notion Change

    A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework

    Full text link
    Class imbalance poses new challenges when it comes to classifying data streams. Many algorithms recently proposed in the literature tackle this problem using a variety of data-level, algorithm-level, and ensemble approaches. However, there is a lack of standardized and agreed-upon procedures on how to evaluate these algorithms. This work presents a taxonomy of algorithms for imbalanced data streams and proposes a standardized, exhaustive, and informative experimental testbed to evaluate algorithms in a collection of diverse and challenging imbalanced data stream scenarios. The experimental study evaluates 24 state-of-the-art data streams algorithms on 515 imbalanced data streams that combine static and dynamic class imbalance ratios, instance-level difficulties, concept drift, real-world and semi-synthetic datasets in binary and multi-class scenarios. This leads to the largest experimental study conducted so far in the data stream mining domain. We discuss the advantages and disadvantages of state-of-the-art classifiers in each of these scenarios and we provide general recommendations to end-users for selecting the best algorithms for imbalanced data streams. Additionally, we formulate open challenges and future directions for this domain. Our experimental testbed is fully reproducible and easy to extend with new methods. This way we propose the first standardized approach to conducting experiments in imbalanced data streams that can be used by other researchers to create trustworthy and fair evaluation of newly proposed methods. Our experimental framework can be downloaded from https://github.com/canoalberto/imbalanced-streams

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf

    On the Window Size for Classification in Changing Environments

    Get PDF
    Classification in changing environments (commonly known as concept drift) requires adaptation of the classifier to accommodate the changes. One approach is to keep a moving window on the streaming data and constantly update the classifier on it. Here we consider an abrupt change scenario where one set of probability distributions of the classes is instantly replaced with another. For a fixed ā€˜transition periodā€™ around the change, we derive a generic relationship between the size of the moving window and the classification error rate. We derive expressions for the error in the transition period and for the optimal window size for the case of two Gaussian classes where the concept change is a geometrical displacement of the whole class configuration in the space. A simple window resize strategy based on the derived relationship is proposed and compared with fixed-size windows on a real benchmark data set data set (Electricity Market)

    Ensemble based on randomised neural networks for online data stream regression in presence of concept drift

    Get PDF
    The big data paradigm has posed new challenges for the Machine Learning algorithms, such as analysing continuous flows of data, in the form of data streams, and dealing with the evolving nature of the data, which cause a phenomenon often referred to in the literature as concept drift. Concept drift is caused by inconsistencies between the optimal hypotheses in two subsequent chunks of data, whereby the concept underlying a given process evolves over time, which can happen due to several factors including change in consumer preference, economic dynamics, or environmental conditions. This thesis explores the problem of data stream regression with the presence of concept drift. This problem requires computationally efficient algorithms that are able to adapt to the various types of drift that may affect the data. The development of effective algorithms for data streams with concept drift requires several steps that are discussed in this research. The first one is related to the datasets required to assess the algorithms. In general, it is not possible to determine the occurrence of concept drift on real-world datasets; therefore, synthetic datasets where the various types of concept drift can be simulated are required. The second issue is related to the choice of the algorithm. The ensemble algorithms show many advantages to deal with concept drifting data streams, which include flexibility, computational efficiency and high accuracy. For the design of an effective ensemble, this research analyses the use of randomised Neural Networks as base models, along with their optimisation. The optimisation of the randomised Neural Networks involves design and tuning hyperparameters which may substantially affect its performance. The optimisation of the base models is an important aspect to build highly accurate and computationally efficient ensembles. To cope with the concept drift, the existing methods either require setting fixed updating points, which may result in unnecessary computations or slow reaction to concept drift, or rely on drifting detection mechanism, which may be ineffective due to the difficulty to detect drift in real applications. Therefore, the research contributions of this thesis include the development of a new approach for synthetic dataset generation, development of a new hyperparameter optimisation algorithm that reduces the search effort and the need of prior assumptions compared to existing methods, the analysis of the effects of randomised Neural Networks hyperparameters, and the development of a new ensemble algorithm based on bagging meta-model that reduces the computational effort over existing methods and uses an innovative updating mechanism to cope with concept drift. The algorithms have been tested on synthetic datasets and validated on four real-world datasets from various application domains
    • ā€¦
    corecore